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FORMULATION OF PROBLEM

Ab initio calculations on systems of chemical interest require
solutions to the Schroedinger equation. Although exact wave functions
cannot be obtained for systems containing more than one electron, con-
siderable progress has been made by quantum chemists in the development
of mathematical methods from which rather accurate, approximate wave
functions can be generated. Programming these methods on high-speed
computers has enabled the quantum chemist to provide quantitatively
meaningful results of importance to the field of chemistry. However, the
need for calculations on molecular systems with ever-increasing numbers
of electrons will continue to strain the capabilities of computers.
Therefore, refinements in the existing methods as well as the search for
new techniques must be continually made so that accurate calculations on
large systems will become more accessible.

The most versatile ab initio treatments for atoms and molecules in-
clude the concept of the complete set of spin orbitals for constructing
wave functions. Each spin orbital is defined as a product of a one-~
electron space orbital wi(&) and a spin function (1). Since a complete
set of spin orbitals is usually infinite, the theoretician must resort to
the use of finite subsets in performing calculations. From these orbital
subsets approximate wave functions are constructed by any one of a number
of ab initio theories. O0f these, the most widely used one is the Hartree-
Fock method (2) in which the wave function is an antisymmetrized product

of spin orbitals us,



$p(1,2,...,N) = A{u](l)uz(Z)....uN(N)} . 1

The space orbitals mi(ﬁ) may be expanded in terms of a finite number
of suitably chosen basis functions y,,

o, (r) = i X (£) Cpp- (2)
Once the analytic form for Xk(;) is specified, the variational principle
is invoked in order to determine the optimal xk(;? and expansion co-
efficients Cki which give the lowest total energy of the atomic or
molecular system. 17 one is interested in obtaining in this manner the
minimum total energy corresponding to Equation (1), approximate Hartree-
Fock solutions are produced.

A variety of basis functions have been introduced in the past and
used in atomic and molecular calculations. The ‘type of basis set to be
investigated in the present work is the even-tempered basis of primitive
atomic orbitals defined by

k [ (22"1'3)/25]

€ 2 )

k gy -2 .m
. exp ( @ BT Yer Sy (o),

p(kZmig) =N, - (o8

ag’Bz >0, 82 #1, k=1,2,...,M (3)

Two choices of the power ¢ are of particular interest. The choice € = 1
ylelds even-tempered exponential-type primitive atomic orbitals
(ETEPAO's); the choice € = 2 yields even-tempered Gaussian-type primitive

atomic orbitals (ETGPAO's). The parameters a, and 8, are, in general,



different for different values of the quantum number %, although the
possibility of using the same a and B for all values of 2 will also be
considered. The symbol sz denotes the k-th power of Bz. The factors
le contain the necessary numerical normalization constants. The
Szm(@,v) are normalized spherical harmonic functions which may be real

or complex. As discussed in Reference (3), treating e Szm (6,9) as a
unit (a solld spherical harmonic) facliitates the formulatlon of mathe-
matical expressions for integral evaluation. The normallzation constants
are

-1/2
Nl = 232 [(a040)11]

1/2

Ni P A VA YOPRINEE

.The special form for the exponent parameters, alek, which suggests
the name '‘even-tempered'', is of particular importance for atomic and
molecular calculations. A basis set of M even-tempered primitives,
instead of having one optimizable orbital exponent per basis function,
has at most only two such parameters for each value of 2. Such a large
decrease in the number of optimizable parameters greatly increases the
feasibility of performing full optimizations in atoms and molecules.
Excapt for calculations on atoms, full-scale molecular optimizations
employing the most widely-used bases with Ck replacing aZBQk have been
found to be unfeasible in the past. This is due to the fact that
optimization methods are iterative and based on quadratic fits where, for
a given number of free parameters n, each fit requires (n+1) (n+2)/2

function evaluations per Independent group.



in Reference (4) linear combinations of ETEPAO's (e = 1 in Equation
(3)) were found to give close approximations to atomic SCF orbitals.
The ETEPAO's would be the best basis functions for molecular calculations,
too. However, the difficulties encountered with exponential-type functions
such as the ETEPAO's in calculating molecular multi-centered integrals,
is the main deterent to their use. On the other hand, the multi-center
integrals over primitive Gaussians are much simpler and more tractable
as detailed in Reference (5). Therefore, in spite of the fact that more
Gaussian than exponential primitives are needed, the majority of molecular
calculations have used Gaussian basis sets.

The present work is concerned primarily with the construction of
bases of ETGPAQ's for use in molecular calculations. Chapter | deals
with the economic deployment of ETGPAO's in expanding atomic SCF orbitals.
In Chapter |1, use is made of the geometric progression of orbital ex-
ponents, Equation (3), to devise a method for constructing primitive and
contracted even-tempered Gaussian atomic orbitals which allow the afomic
orbitals to expand or contract in molecular calculations. Finally, in

Chapter il full optimizations of the parameters o, and B2 are made in

A
molecules. For this purpose, minimization schemes are implemented and.
used in conjunction with the LCAQ0-MO-SCF technique for solving the Hartree-

Fock equations (6). With the techniques developed here, bases of

ETGPAO's are found to be very well suited for use in molecular calculations.



CHAPTER i. ECONOMIC DEPLOYMENT OF EVEN-TEMPERED
GAUSSIAN PRIMITIVES [N EXPANDING ATOMIC SCF ORBITALS
lntroductionA

The econcmic deployment of all available atomic-orbital-type basis
functions is an important consideration when Gaussian-type primitives are
used to expand molecular orbitals, and an important first step in
attaining this effectiveness is the optimal determination of accurate
as well as economic expansions of atomic self-consistent-field orbitals.
This is so no matter which course molecular calculations follow. A
variety of Gaussian expansions for atomic self-consistent-field orbitals
have therefore been published in recent years (7-16). But there still is
a need for systematic analyses comparing the efficiency of such ex-
pansions.

Of particular interest is the problem of the optimal lengths of the
individual atomic-orbital expansions for a given total number of basis
functions. While highest accuracy results, of course, when all primitives
are used for ail atomic orbitals, a substantial reduction in the lengths
of the individual AO0 expansion is in fact possible with only a negligible
effect on the overall accuracy. The examination of this question for
different numbers of total primitives and for different atoms is the main
object of the present investigation.

Even-tempered Gaussian atomic-basis sets are used in these calcula-
tions. As has been discussed in References (17) and (18), the loss in
accuracy incurred by the limitation to even-temperedness is negligible as

compared to the substantial advantages of such basis sets. In the present



context, the systematic formal uniformity of the expansions obtained for
various cases is particularly useful. We are confident that the general

conclusions deduced here are also valid for other types of Gaussian-type

basis sets.
Expansion of SCF-AO's in Terms of
Even-Tempered Gaussian Primitives

In Reference (17), we have introduced the even-tempered Gaussian

primitives (ETGPAO's)
g(kznﬂ;ﬁ =Ny - (GQB;)(22+3)/hexp('a262kr2)°r2Y2m(®,¢) (4a)

(La+7)/4 -%
= 2 T

N, [(2941)11]7% (4b)

where BE denotes the k-th power of the spacing parameter 82 and Yzm are
normalized spherical harmonics.

Energetically optimal even-tempered representations of canonical
SCF-AO's result from solving the matrix form of the Hartree-Fock equa-
tions in a basis of even-tempered Gaussian primitives. We have found,
however, that atomic orbitals of nearly equal quality are obtained by
suitable least mean square fitting of even-tempered expansions to known
accurate exponential-type representations of SCF-AO's. The fitting pro-

cedure is based on the weighted mean square deviations
= _ 2
d (e, ,8,) = fdv[w(nzmlg) m(nlm]&)] /r (5)

of the even-tempered expansions



m(nam|r) = T glkam|r)c(k|ng) (6)
" k m

from “accurate'' orbitals y(n2m). Minimization of Equation 5 for fixed
a,,B, vields the orbital expansion coefficients c{k|n%) of o, and B, .
Monlinear minimization of the weighted averages

D(aZ’BR) =z
n

4,0 (0 8,) %)

wnl ng

yields the optimal parameters al,sz for each symmetry 2.
The weight factors in these equations, namely r—] in Equation (5)

and W in thation (7) were chosen so as to make the total energies

L

resulting from these wavefunctions as close as possible to the accurate

SCF energies. |t was found that r-] was superior to any other power of r
and that the most effective choice for the Wog was
W = (2 - Sln)lO]-n x (orbital occupation number). (8)

This choice favors the inner orbitals and, In most cases, results in a
somewhat better relative fit for them. Nonetheless, the values of

orbital energies of the outer orbitals.are, in general, still better than
those of the inner orbitals. The relative emphasis on the accuracy of the
inner orbitals is considered desirable for use of the resulting expansions
in molecular calculations, because the inner orbitals remain much the
same, when atoms form different molecules. Valence orbitals, on the other
hand, vary greatly when atoms enter verious bonds, and for them, flexi-
bility and adaptability of the basis set would seem to be more appropriate
than an extremely accurate reproduction of particular atomic or molecular

orbitals in any one system.



Equations (5) and (7) yield the best possible fitted even-tempered
Gaussian bases. However, for the purpose of the present investigation,
it is found that no substantial deterioration in accuracy occurs if one
assumes o, = a and 62 = B to be independent of £ and determines a and 8

L

by minimizing

D(e,8) = x w_,d_ (a,8). (9)
ng

This is substantiated in Table 1 which provides a comparison of the
absolute and relative deviations of the total energies and of the indi-
vidual orbital energies for the atoms nitrogen and aluminum obtained by
the following procedures:
(1) weighted least mean square fitting of accurate SCFAO's by even-
tempered Gaussian-type expansions with different ay and 82
for different %2, based on Equation (7);
(2) weighted least mean square fitting of accurate SCFAO's by
even-tempered Gaussian-type expansions with a, = a and

A

B, = 8 the same for all %, based on Equation (9).

L
The poorer energies of the 1s orbitals result because in procedure (2),
a larger number of outer orbitals influence the values of o« and 8 (which
the 1s orbital, too, must use).

Comnarisons of tntal and individual orbital enerqies for exnansions
obtained by procedure (2) with those of the energies optimized SCFAO's of
Huzinaga (7) and Clementi (18) are presented in Tables 2, 3, 4, and 5.

Each table contains information pertaining to one atom or a group of

atoms all having the same number and kinds of SCFAO's. For each atom in



Table 1. (Comparison of even-tempered Gaussian bases with different @ R for different ¢ and
with :x’ =a, ﬁ’ = R the same for ail ¢ LA

Absolute Deviations (in atomic units) from Accurate SCF Energiesa
b

Atom Basis A€ (3s) & (3p) & (2s) ¢ (2p) & (1s) zE
N @,8,17.7.8:11,11) . 0032 . 0050 . 029 .075
@pl7.7.8511,7) L0037 . 0041 .031 .078
@,8,17.7,7:17,17) . 00011 -.000i7 . 0025 . 0090
@p17.7,7:17,10) . 00007 -.00019 . 0026 . 0092
Al @,8,]6.6.6,6,6;18,18)  .0070 - 0059 .013 . 0083 -039 . 058
(11516,6,6,6,6;18, 10) . 0060 . 0043 .0lL .0l . 057 .12
@,8,17,7.7.7,7;21,21) . 00071 . 00029 . 0014 -.000i8 .01 . 038
©@817.7,7.7,7;21,12) . 00056 . 00020 . 0011 -.00029 .012 .039
Percent Deviations from Accurate SCF Energiesa .
. . b o . o o o
Atom Basis |%ee (3s) ] e Bp)|  (%ec 2s)] lnee @p) | e (0s) 1 |7a€|
N @,8,17,7,6;11,11) .33 .88 .19 b
@e}7,7,4;11,7) .39 .71 .20 TR
,6,17,7.7:17.17) .01l . 029 -016 .016
(12 (7.7,7:17,10) .0i0 - 033 -017 .017
Al (a,ﬁ, 16,6,6,6,6;18.18) 1.8 2.8 .27 .26 . 066 .0ko
@p16,6.6,6,6;18,10) 1.5 2.0 .28 .34 . 097 - 050
@,p,i7.7,7,7.7:21,21) .18 BTN .027 . 0056 .018 .015
©p17,7,7,7,7;21,12) A .10 . 022 . 0090 .019 .016

®The accurate SCF energies are taken from Clementi (see Ref. 18). The absolute deviation and absolute
value of the percent deviation are defined as s = e~¢ (Clementi) and | | = 1 /¢ (Clementi )jx 100,
respectively, and similarly for AE.

l:"rhe symbols «,8, and up to the left of the vertical line within the parentheses distinguish bases with
different C‘LB-" for different 7 and with ay =a, By = 8 for all 1, respectively. The number of primi-
tives for each AD is given between the vertical line and the semicolon according to the order: ls.
2s, 3s, 2p, 3p. To the right of the semicolon, the number of basis functions and the numter of expo-
nents are given.



Table 2. Absolute and relative errors in orbital and total energies of even-tempered and optimal
Gausslan bases for Li

Absolute Deviations (in atomic units) from Accurate SCF Energiesa

Atom Basisb _ Ae(2s) Ae(ls) AE

Li H(7,7;7,7) L0014 .00027 .0024
BR(7,7;7,7) .00049 .0053 .0097
H(10,10;10,10) .00002 .00012 .00022
BR(7,6;10,10) .00006 .00051 .0015

3The accurate SCF energies are taken from Clementi (18). The absolute deviation and absolute
value of the percent deviation are defined as Ac = € - ¢ (Clementi) and | % Ae| =
|ae/e (Clement1)| x 100, respectively, and similarly for AE.

bThe codes H and BR reference Huzinaga's bases (7) and this work, respectively. The number of

primitives for each A0 is given in parentheses to the left of the semicolon according to

the order: 1s, 2s, 2p, 3p. For code BR the value of k, which subscripts the initial primitive
Gaussian in Equation (6), is different for each orbital corresponding to a given value of %.
These initial subscripts are not given here,but are available in Table 7. To the right of the
semicolon the number of basis functions (=N, as defined on p. 15) and the number of distinct
exponents (=M, as defined 2n p. 15) are given.



Table 2. (Continued)
Percent Deviations from Accurate SCF Energiesa
Atom Basis® | %ae (25) | | %0e (1) | | %4E |
Li H(7,7;7,7) .70 .011 .032
BR(7,7;7,7) .25 .21 13
H(10,10;10,10) .01 .0048 .0029
BR(7,6;10,10) .03 .020 .019

1l



Table 3. Absolute and relative errors in orbital and total energies of even-tempered and optimal
Gaussian bases for Na

Absolute Deviations (in atomic units) from Accurate SCF Energiesa

Atom Basisb ‘ A€ (3s) A€ (2s) A€ (2p) ae (1s) AE
Na H(9,9,9,5;14,14) .0017 . 0068 . 0074 .012 .030

BR(5,5,6,5;14,9) . 0013 .012 . 0063 . 096 .22
H(12,12,12,6;18,18) . 00037 .0018 . 0020 . 0026 . 0063
BR(7,7,7,7;19,12) . 00016 _.0012 . 00047 . 0089 . 026

Percent Deviations from Accurate SCF Energiesa

Atom Basisb %€ (3s) | |%a€ (2s) 1 1%ac (2p) | V%ne (1s) | 1%aE |
Na H(9,9,9,5;14,14) .92 .24 .49 . 028 .018
BR(5,5,6,5;14,9) N 42 A .23 .13
H(|2,|2,|2,6;18,18) .20 . 064 .13 . 0065 . 0038
8R(7,7,7,7:19,12) . 088 . 042 031 . 022 .016

3See Table 2 for this footnote.

bSee Table 2 for this footnote.

cl



Table &4. Absolute and relative errors in orbital and total enmergies of even-tecmpered and
optimal Gaussian bases for B, N, and F

13

Absolute Deviations (in atomic units)} from Accurate SCF Energiesa

Atom Bas.isb

8 H(7.7.3;10,10)
8R(7.7,4:11,7)

H(10,10,6;16,16)
BR(7,7,7;17.10)

N H(7,7,3;10,10)
BR(7,7,4;11,7)

H(10,10,6;16,16)
8R(7.7,7517,10)

F H(7,7.3:10,10)

H(10,10,6;16,16)
BR(7,7,7:17,10)

& (2s)

. 0013
. 0016

. 00003
. 00002

. 0070
. 0037

. Q0021
. 00007

. 021
. 0090

. 00076
. 00051

ac (2p) s (Is)
. 0063 .0030
. 00085 . 015
. 00009 . 00021
~.0000S . 0010
.01y . 00u8
. 0041 031
. 000U . 00044
-0.00019 . 0026
.07 .012
.010 . 056
.0010 .0012
. 0000} 0061

Percent Deviations from Accurate

Atom Basisb
8 H(7,7,3;10,10)
BR(7,7,4;11,7)

H(10,10,6;16,16)
8R(7.7,7:17,10)

N H(7,7,3;10,10)
BR(7,7,4;11,7)

H{10,10,6;16,16)
8R(7,7,7517,10)

F H(7,7,3;10,10)
BR(7,7,4;11,7)

H(10,10,6;16,16)
BR(7,7,7:17,10)

1%s¢ (25) |

.26
.32

. 006
. 004

74
-39

. 022
.01

-3
.57

. 048
. 032

SCF Enerv_:;iesa

[%a€ (2p) | %€ (15)]
2.0 .039
.27 .20
.03 . 0027
.03 .013
3.4 - 031
.71 .20
.077 . 0028
.033 .017
6.4 . 045

1.4 .21
N . 0046
. 003 . 023

AE

.015
.03

. 00076
. 00k

. 061
.078

. 0020
. 0092

A7
.6

- 0043
.016

I75E |

. 059
14

.0030
.018

.1
143

. 0036
.017

.18
.16

. 0043
.016

®see Table 2 for this footnote.

Psee Tabie 2 for this footnote.
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Table 5. Absolute and relative errors in orbital and tc:ial energies of even-tempered and optimal
Gaussian bases for Al, P, and Ar

Absolute Deviations (in atomic units) from Accurate SCF Energiesa

Atom Basis® 2€ (3s) a€ 3p) 2€ (25) & (20) a (1s) i
Al H(10.10.10.6.6.;16,16) . 0071 . 015 - . 0075 . 0099 . 0087 . 052

BR (6,6,6,6,6;18,10) . 0060 . 0043 . 014 .01} . 057 .12
H(12.12,12,8,8;20,20) . 0031 . 0018 . 0066 . 0067 . 0082 . 0083
8R(7,7.7.7,7:21,12) . 00056 . 00020 .oon ~-.00029 .on .039

[ H(10.10.|0.6,6;16,16) . 013 . 013 . 024 . 031 . 029 . 091

BR(6,6,6,6,6;18,10) . 0095 . 0079 .016 .0l0 . 056 .15
H(12,12.12,8,8;20,20) . 0030 . 0029 . 0047 . 0048 . 0057 .01l
BR(7,7,7,7,7:21,12) -. 00004 -.00016 -.00029 -.0029 .012 . 058

Ar H(IO,XO.10,6.6;16,16) .012 .01§ 017 .028 . 020 N

BR(6,6.6.6,6:)8,10) .016 .016 . 029 .020 . 086 24
H(12,12,12,8,8;20,20) . 0060 .0067 . 0036 . 0079 . 0082 . 021
BR(7,7,7,7,7:21,12) -.00079 -. 00099 -.0029 -.0077 .013 . 0%4

Percent Deviations from Accurate SCF Energiesa

. b

Atom Basis [%ee (3s) | [%e Bp)| % (2s)]  |%e(Zp)]|  1%sc (is)] 178E |
Al H(10,10,10,6,6;16,16) 1.8 7.1 .15 .31 .015 .021
8R(6,6,6,6,6;18,10) 1.5 2.0 .28 .34 .097 .050
H(12,12,12,8,8;20,20) .79 .86 .13 .21 .04 . 0034
BR(7,7,7,7,7;:21,12) L .10 . 022 . 0090 .019 .016

p H(10,10,10,6,6;16,16) i.9 3.3 .32 .57 .036 .027
BR(6,6,6,6,6;18,10) 1.3 2.0 .21 .18 . 069 . 045
H(12,12,12,8,8;20,20) 43 L7 . 062 .089 . 0071 . 0031
8:(7,7,7,7,7:21,12) .0l L041 . 0038 .052 .015 .017

Ar H(10,10,10,6,6;16,16) A 2.5 BTN .29 .017 . 026
BR (6. 6,6,6,6:18,10) 1.2 2.6 .24 .21 .071 L 046
H(12,12,12,8,8;20,20) 47 1.1 .029 . 082 .0069 . 0039
8R(7,7,7,7,7;21,12) . 061 .17 .023 . 080 .01l .018

S¢ee Table 2 for this footnote.

bSee Table 2 for this footnote.
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the tables, shell-by-shell energy comparisons are given for two even-
tempered expansions. The percent deviations show that even-tempered
Gaussian bases provide good representations of accurate SCFAO's, even if
there is a substantial reductiocn in the number of primitives expanding
each SCFAO. This reduction in the size of the basis set will be dealt
with in greater detail in the next two sections. Moreover, these tables
confirm that the procedure based on Equation (9) will be very adequate
for establishing the information sought in the present investigation. It
can also be seen that the deviations depend upon the expansion length and

the orbital type In a consistent manner.

As has been discussed in a separate investigation (19), there exist
advantages in using nonorthogonal SCFAO's rather than orthogonal canonical
SCFAO's. Firstly, scaling in a molecular context is more appropriate for
the nonorthogonal SCFAO's. Secondly, shorter expansions in terms of
primitives result for the latter. It is this latter property which
furnishes the very basis for the present investigation. We ask: How

short can the expansions of these nonorthogonal SCFAO's be chosen without

loss of accuracy? The even-tempered SCFAO's to be discussed in the sequel

are therefore obtained by the following procedure. First, accurate ex-
pansions of canonical SCFAO's in terms of exponential type primitives,
such as given by Clementi (18) or by Raffenetti (4) are deorthogonalized
by the technique developed In Reference (19). These accurate exponential
expansions of nonorthogonal SCFAC's are then expressed in terms of even-
tempered Gaussian expansions of various leng}hs by the fitting procedures

- -

described in connection with Equations (5) to (9), with @)= a, B,= 8 the
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same for all g.
Determination of Optimal Expansions

Criteria

The efficiency of an atomic orbital basis is roughly given by the
ratio of the ''quality' of the generated SCF wavefunction to the '"number
of AQ's deployed.'' As a criterion for judging the ''quality’ of an
approximate SCF wavefunction, we shall use the total weighted mean square
deviation (TWMSQD) introduced in Equation (9) of the preceding section,
since it appears to represent a satisfactory compromise between an energy
and a wavefunction criterion. The concept of ''the number of AO's
deployed' is complicated by the fact that one must distinguish between
the total number of basis AO's and the number of basis AO's used to
represent the individual SCFAO's. Fortunately, the analysis is clarified
by the fact that the even-tempered parameters o,B are chosen independent
of %. An examination of the calculated expansions shows that (1) the

total number M of exponents aBk[k =1, 2, ... M] determines the optimal

quality possible for a given basis, and (2) this quality can be closely
approximated even if each of the individual AO's does not contain all M
expcnents.

The discussion is facilitated by defining the following quantities:

x(n)

the number of even-tempered basis AQ's used to represent any one
of the SCFAO's vw(nim). (The expansions for different m-values are
entirely analogous to each other.)

N(2) = The number of even-tempered basis A0's used to represent all SCF
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A0's y(nim) for n = (2+i), (2+42),...with £ and m fixed. Since
the same basis AO's may be used by different SCFAO's, the number
N(2) is in general smaller than the sum an(nz).
N = anlx(n,z) = the “total number'' of basis functions occurring in all
SCFAQO's counting, however, each 2-symmetry only once and not
(22+1) times.
Since the representation of the s-orbitals‘requires basis A0's with
highest and lowest exponents, it is apparent that N(0) = N(s) = M = the
total number of exponents aBk. However, for 2 > 1, we have in general

N(2) < M.

Discussion of a prototype

To illustrate the gquantitative situation, we shall work through the
explicit results of the oxygen atom groundstate. Figure 1 contains plots
of TWMSQD against N. Each point corresponds to a particular choice of
x(1s), x(2s), x(2p), and M. The number triple next to each point is in
fact [x(1s), x (2s), x(2p)]. The pcints on the dashed curve are obtained
when all exponents are used in the expansion of each individual SCFAO,
i.e., x(Is) = x(2s) = x(2p) = M. Thus, the number triples next to these
points are in fact (M, M, M). Since all coefficients as well as o and 8
are completely optimized, this clearly represents the lowest TWMSQD
obtainable for the chosen set of primitives. Plotted are results for
3 < M < 13 because, for M < 3, the calculated energy becomes positive,
and for M > 13, TWMSQD improves by less than 10-5.

From any one of these expansions more efficient expansions are

derived by the following procedure. In each SCFAO, primitives with
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Figure 1. Total weighted mean square deviation (TWMSQD) for even-tempered Gaussian

expansions of various lengths for nonorthogonal SCFAO's of the oxygen

groundstate
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the highest and/or, lowest exponents are eliminated if the magnitudes of
their coefficients are < 10-4 and two coefficients of nearly the same
magnitude have alternate signs. Thus a new expansion [x'(Is), x'(2s),
x'(2p)] is defined in which each SCFAQO contains only part of the primi-
tive set. Coefficients and parameters (o,B) are again optimized, and the
resulting TWMSQD is plotted and connected to the (M,M,M) point by a solid
line. For M = 11, this yields the second expansion (9,9,8). The ex-
pansion (9,9,8) is then re-examined: now all primitives with coefficient
magnitudes < 1072 are deleted, and the coefficients and (a,B) re-
optimized. It corresponds to the expansion (8,7,7). Explicit informa-
tion about the expansions (11,11,11), (9,9,8), and (8,7,7) of oxygen are
given in Table 6. An examination of the orbital mean square deviations
shows that the deterioration in the TWMSQD is primarily due to the elimi-
nation of the 2p primitive from the expansion (9,9,8). Adding again the
2p primitive yields an expansion (8,7,8), also shown in Table 6, that is
about as good as the expansion (9,9,8). It is apparent that hardly any
accuracy has been lost until now. The situation changes, however, when
one or several of the SCFAO expansions are further shortened. Hence,
primitives are now removed one by one from each SCFA0 in order to deter-
mine the effect on the TWMSQD. In this manner the additional points
(8,6,7), (8,7,6), and (7,7,7) are determined on the branch that originates
from (11,11,11). It is seen that, while the branch is fairly horizontal
until (8,7,8) or (8,7,7), it turns up to the left of these points. In
fact, for the expansion (7,7,7), the TWMSQD increases so much that it be-

comes identical to the TWMSQD obtained for the expansions based on M = 10.



Even-tempered Gaussian expansions of nonorthogonal SCFAQ's corresponding to M = 11 for oxyvien ’p}

Table 6.
Expansions of Nonorthogonal SCFAQ's
11,11,40)-8asis 9,9,8)-8asis

Exponentsa Is 2s 2p Exponentsa Is 2s 2p

0.145136 -0.001¢81 0.123734 0.171842 0.13653¢4 0.0 0,10979% Je159111

0.415342 0.006109 J.582929 J.416577 0.367053 9.0 0.567C91 0.409299

1.188598 -0.0017452 0.418179 0.395410 1.129840 -0.00C629 0.439765 243590613

3.401451 0.149088 -0,037437 0.222651 3.215034 0.125713 -0.022543 Jd.2129%6

9.734045 0.467363 -0,082339 0.058118 9.148589 0.458871 -0.086765 J.262617

27.856242 0.,34725) -0,013996 0.014121 26.032909 0.360612 -0.015983 7.015576

719.717139 0.135246 -0.003107 0.002316 74.,078345 0.145340 -0.003381 J.002516
228,.,129201 0.0421€1 0.000188 0.000523 210.794774 0,.045810 0.000055 0.)0C693
652 .844964 0,012637 -9.000205 0.000032 599,.,830312 0.014038 -0.000114 00
1668,2608265 0.002356 0.000060 0.000024 1706,856367 0.002%66 0.0 J.0
5346,485767 0.001663 -0,00C0015 -0.200001 4856.,971382 0.001884 3.0 3.0

MSQ-DEV 2.12(-5) 6.16(-6) 7.61(-6) 2.30(-5) 5.75(-6) 6.59(-6)

TWHSG) 5.10(-5) 5.36(-5)

8,7.7)-8asls 8,7,8)-Basis

Exponentsa Is 2s 2p Exponents® Is 2s 2p

0.141502 0.0 0.11429¢ J.163408 0.140186 0.0 2.111023 3.150289

0.402524 0.0 0.571097 0.410417 0.398189 0.0 0.567145 2.408863

1.145042 0.0 0.433226 0.398366 1.13102¢ 0.0 0.438287 0.338826

3,25725)3 0.128883 -0.025837 0.239196 3,212585 0.12441% =-0.022019 3.212274

9.265772 0.461290 -0.086047 0.062559 9.125100 0.458343 -0,087143 0.052784

26,357952 0,357144 -0.015293 J.014116 25.919142 0.360670 -0.0157593 ) 015647

T74.979358 0.143741 -0.003492 J3.233664 73.621318 0.146173 -C,003612 ).022539
213,290632 0.045071 0.0 0.0 209,115659 0.046072 0.0 04230732
606.738903 0.013883 0.0 3.0 593,976858 0.014227 0.0 bR
1725,5646178 0.002514 0.0 0.0 1687,145328 0,002577 0.0 0.0
4909.779239 0.,001862 0.0 2.0 4792.205826 0.301920 0.0 J.)

HSQ-DEV 2.30(-5) 5.92(-6) 8.80(-6) 2.31(-5) 5.84(-6) 6.60(-6)

TWHSQD 5.54(-5) 5.38(-5)

he exponent paramcters are as follows:

(. )-8asis, a = 0.0507163. B = 2.861733; (9,9,8)-%asis.
a = 0.0490356, B = 2.845565; (8,7,7)-Basks, a = 0.0497429, B = 2.844658; (8.7,8)-Basis. a = 0.0493541,
p = 2.840423.

0¢
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Thus the following conclusions can be drawn: (i) For M = 11 it is
wasteful to choos> x(1s), x(2s), x(2p) larger than (8,7,8) since no
accuracy is gained; (ii) if x(Is), x(2s), x(20) are chosen as (7,7,7),
then it is wasteful to choose M larger than 10; choosing M = 11 does not
vield additional accuracy. The most effective expansion for M = 11 is
therefore (8,7,8) or (8,7,7). From Figure 1 it is apparent that the
situation Is similar for other values of M. In each case, the branch
originating at (M,M,M) starts out to be horizontal and then turns up. The
most effective expansions occur for the points where the upturn begins.

The selection of the most effective expansion for a given M value is
made with the help of the following criterion. First, it is required
that the TWMSQD of the reduced expansion is f_l.h times the TWMSQD of the
(M,M,M) expansion. In general, this leads to expansion coefficients
1.10-3. In cases where two expansions with similar TWMSQD exist, the
WMSQD's for the individual orbitals are examined and the smallest basis
is chosen consistent with the requirements that the WMSQD's of the indivi-
dual orbitals, too, are f.l.h times the corresponding values for the
(M,M,M) expansions. |If there is still ambiguity, the expansion giving
the best accuracy tc the inner shell is chosen. In this manner one finds
the expansion (8,7,8) for oxygen and M = 11. It is characterized by the
following data:

M=11, i.e., exponents aBk with k=1,2, . . . 11

x(1s) = 8, i.e., exponents for k = 4, 5, 6, . . . 11

x(2s)

7, i.e., exponents for k=1, 2, . . . 7

x(2p) = 8, i.e., exponents for k =1, 2, . . . 8



22

N(s) = 11, i.e., exponents for k =1, 2, . . . 11
N(p) = 8, i.e., exponents for k=1, 2, . . . 8
N=8+ 7+ 8 =23

TWMSQD = 5 x 10 °.
Most Effective Expansions for Various Atoms

Expansion lengths

A graph of the type discussed for oxygen can be obtained for every
atom. It then can be used to determine the most economical expansion for
each value of M. The results of this analysis for all atoms up to krypton
are presented in Table 7. Each column in this table contains data
corresponding to a group of atoms, for which the most economical expansions
have similar characteristics regarding the x(n,%) numbers. Atoms with the
same number and kinds of SCFAO's belong to one group. For each value of
M, there are given the values of x(n,2) and, in parentheses, also the k-
value of the lowest expcnent k for each (n,%2). For example, the atoms Sc
through Zn in the periodic system form a group and, for them, the most
effective expansions based on a total of M = 10 primitive exponents aBk
are as follows:

x(1s) = 6, with k=5,6, 7, 8, 9, 10,
x(2s) = 5, with k=4, 5, 6, 7, 8,
x(3s) =5, withk=2, 3, 4, 5,6,
x(3s) = 5, with k=1, 2, 3, 4, 5,
x(2p) = 5, withk = 4, 5, 6, 7, 8,
x(3p) = 5, with k =2, 3, 4, 5,6,
L

x(3d) = 5, with k =2, 3, 4, 5, 6,
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Tabie 7. Expansion lcngths of even-tempered Gaussian bases for the most economlic representations

of nonorthogonal SCFAO's
No. oF
Exponents Li,Be(v) 8,C,N,0,F,Ne(a) Na(§), Mg Al,si(@),P,S,Cl,Ar (@)

3Mm2a) 301)301),3(1)

3@30) 3()30)30)  3(2)3(2)3(1),3(2) 3(2)3(2)3(Q1),3(2)3(1)

L)) 36)3{1),30)  30)3(2)400),3(2) 3(3)3(2)4(1),3(2)4(1)

LGWG)  BBIALEM) BBI@BO)E(2) 4B3)A)(1),4(2)4()

5G)()  56)5(1),5(1)  B(BL(2)5(1),5(2) 4(B)4(2)5(1),5(2)5(!)

6(3)5(1) 6(3)5(1),6(1)  5(4)5(2)5(1),5(2) S5()5(2)5(1),5(2)5(1)

73)5(1)  6(4)6(1),6(1)  5(5)5(3)6(1),5(3) 5(5)5(3)6(1),5(3)6(1)
10 78)6(1)  7(8)7(1),7200)  6(5)6(3)6(1),6(3) 6(5)6(3)6(1),6(3)6(1)
n 8(#)6(1)  B(4)7(1),8(1)  6(6)6(3)7(1),6(3) 6(6)6(3)7(1),6(3)7(1)
12 9W7(1)  9(%)8(1),8(1)  7(6)7(3)7(1),7(3) 7(6)7(3)7(1),7(3)7(1)
13 10®)7(1) 10(4)8(1),9(1) 8(6)8(3)8(1),8(3) 8(6)8(3)8(1),8(3)8(1)
L] 9(6)8(3)8(1),8(3) 9(6)8(3)8(1),8(3)8(1)
:?x;o::nzs K(®),ca Se, T1,V, Cr, Mn, Fe, Co, N1, Cu, Zn (@) Ga, Ge,As, Se, Br, Kr (X)
5 B(2)8(2)5(1)5(1),5(2)5(1) B(2)4(2)5(1)5(1),4(2)5(1),50)  4(2)4(2)5(1)5(1),4(2)5(1)5(1),5(1)
6 434 (2)s5(1)501),4(2)5(1) B(3)(2)5(1)5(1),H(2)5(1),5(1)  4(3)4(2)5(1)5(1),4(2)5(1)5(1),5(1)
7. SGIBEBISS(1),6(B)5(1) 53)6B)5(1)50),6(G)5(1),5(1)  5G3ILB)IS()SA,5B)5(1)5(1),5(1)
8 S5(4)50)5(2)5(1),5(315(2) 5(4)5(3)5(2)5(1),5(3)5(2),5(2) 5(4)5(3)5(2)5(1),5(3)5(2)5(1),5(2)
9 5(5)5(4)5(2)5(1),5()5(2) 5(5)S(4)5(2)5(1),5(4)5(2),5(2)  5(5)5(%)5(2)5(1),5(4)5(2)5(1),5(2)
1o 6(5)5(%)5(2)5(1),5(1)5(2) 6(5)S(4)5(2)5(1),5(4)5(2),5(2)  6(5)5(4)5(2)5(1),5(4)5(2)5(1),5(2)
N 6(6)6(L)6(2)6(1),6(4)6(2) 6(6)6(4)6(2)6(1).6(4)6(2),6(2) 6(6)6(4)6(2)6(1),6(%)6(2)6(1),6(2)
12 6(M7®)7(2)7(1),7(8)7(2) 6(7)7(4)7(2)7(1),701)7(2),7(2)  6(77H)7(2)7(1), 7()7(2)7(1), 7(2)
13 7(37®)7(2)7(1),7()7(2) 7(N7W7@I7M,7()7(2 ,7(2)  7(7)7®)7(2)7(1),7(%)7(2)7(1),7(2)
14 8(7)8(4)8(2)8(1),8(4)8(2) 8(7)8(4)8(2)8(1),8(4)8(2),8(2) B(7)8(h)8(2)8(1),8(4)8(2)8(1),8(2)

‘Each array of numbers consists of the number of even-tempered Gausslans expanding each SCFAQ, o,

followed by the inltial value of k for a8
Ny (kg Ingg (kpgdng (kg )y ooe

s "2p

in porenthescs.

(kypdng (kg s voe s nyylkgy)-

These parameters are groupcd as follows:
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it should be mentioned that an exhaustive analysis such as that for
oxygen was not carried out for all the atoms of Table 7, but only for
those atoms with the smallest and largest atomic number in each group.
However, some of the selected expansions were examined for a few of the
remaining atoms in each group and were always found to be the most
economical. The validity of this approach is demonstrated in the next
section.
The results reported in this table approximately obey the following
results:
(i) In the most economic expansions, each SCFAO uses the same
number x{(n,%) = x primitives.
(i1) The number of primitives used to represent all SCFAO's within
a given &~ symmetry, i.e., the value of N(L), is related to

the AO expansion length x by

N(g) = x{ag + bl[n(l) - 21}

where n(%) is the maximum value of the n-quantum number for

that 2-vaiue in the atom in question. Specifically,

N(0) = N(s) = x{1.225 + 0.125 n(s)},
N(1) = N(p) = x{1.273 + 0.053[n(p) - 11},
N(2) = N(d) = x.

(iii) Also we have N(s) = M, as mentioned before.

Quality of expansions

As one progresses further into the periodic table, the accuracy ob-

tainable from an expansion based on M primitive exponents gradually
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decreases. This statement encompasses three observations. First and
most important, the weighted mean square deviation of the (1s) orbital
deteriorates, since it becomes increasingly difficult to fit the cusp as
the nuclear charge increases. Second, the quality of the fit of the outer
orbitals remains about the same. Third, the TWMSQD increases because (i)
the inner orbital fit is worse and (ii) a greater number of orbital
deviations are added up. We shall illustrate this behavior for two types
of expansions, the (M,M,M) expansions and the most effective expansions
given in Table 7.

In Figure 2, the situation is illustrated for the (M,M,M) ex-
pansions of the atoms H to Ne. The average weighted mean square devia-

tion per SCFAQ

D(Z,M) = [TWMSQD/anw(n,R,)] (10)

is plotted against M. The increase of the latter quantity is indicative
of the worsening 1s-fit. It is furthermore apparent from the figure that
the orbital average of TWMSQD increases by an almost constant factor of
about 1.2 in going from atomic number Z to atomic number Z+1, regardless
of the values of Z and M. This is confirmed numerically in Table 8.
Figure 3 exhibits plots of [TWMSQD/anw(nE)] versus M for the ex-
pansions given in Table 7. This figure does not contain plots for all
atoms of the second and third rows since the points fall too close to-
gether for a clear diSplay. However, the grouping of all atoms in Table
7 is substantiated by the grouping of the average orbital deviations
plotted in Figure 3. The similarity of the results shown in Figufe 2 and

Figure 3 indicates that the dependence of the TWMSQD upon the atomic
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Table 8. Ratios® of average values of D(Z.M) for neighboring atoms

Be/Li 8/8e c/8 N/C 0/N F/0 Ne/F

1.33 1.25 1.20 1.12 1. 14 .12 1.17

®The ratios are defined as B(Z’rl)/B(Z) where D(Z) = average of B(Z_.M)
over all M with D(Z,M) given in Equation (10)

Lz
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number and M is of general validity.

It should also be mentioned that, to a very good approximation, thé
excited state SCFAO's of Clementi (18), too, may be expanded in the same
bases of Tabic 7. As a result, the conclusions given above are expected
to apply to these states also.

Even-tempered Gaussian bases with the optimal expansion length of
Table 7 for the groundstates of hydrogen through krypton are available
in Reference (20). These expansions were determined by minimizing
Equation (7) for each 2 value and therefore provide improved representa-
tions of the SCFAO's. For each atom the following quantities are tabu-

lated: (1) optimal «, and B, parameter, (2) expansion coefficients, (3)

L
mean square deviations, (4) the expectation values (r™, n = -2, -1, 0,

1, 2, for each atomic orbital, and (5) the energies.

Regularities of exponential parameters

Figure 4 exhibits the values of all exponents aBk for all M values
in oxygen, obtained when all SCFAO's are expanded in terms of M even-
tempered AO's. The pattern indicates that, with increasing number of
erimitives the range of exponential values covered by the even-tempered
set increases and the spacing between adjacent exponents decreases. The
change in o is more drastic than that in B.

This type of behavior is found in all atoms. Figure 5 shows the
variation of B with atomic number Z for various M values of the bases in
Table 7. A strong variation occurs only when both M and Z are small.
Figure 6 shows the variation of o with the atomic number Z for groups of

M values of the bases in Table 7. Since a is essentially a scale parameter,
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it varies more strongly with Z in order to provide the necessary con-
traction of the SCFAO's. Here too, the variation with Z is less pro-

nounced when M is large.
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CHAPTER Il. EVEN-TEMPERED ATOMIC ORBITAL BASES
WITH PSEUDO-SCALING CAPABILITY FOR MOLECULAR CALCULATIONS

Introduction

Work on many-electron systems has revealed that self-consistent-field
atomic orbitals of isolated atoms form optimal minimal basis sets for
molecular calculations, and that improvements beyond such minimal sets
must provide for two types of further flexibility: Polarization and
Contraction-Expansion. A particular form of the latter is orbital scaling,
i.e., the variation of orbital exponents. Scaling optimization also
guarantees the validity of the virial theorem. It is, however, an ex-
tremely time-consuming process, because it requires numerous recalcula-
tions of the energy for different orbital exponents, implying equally
numerous re-evaluations of molecular integrals.

On the other hand, when a complete orbital basis is used, then the

variation of all linear coefficients alone is sufficient to generate all

possible variations of the orbitals, including scaling. It is, therefore,
natural to inquire whether it may not be possible to construct a2 finite
orbital basis of a character such that variation of the linear expansion
coefficients will suffice to at least closely simulate the variation of
orbital exponents in atomic self-consistent-field orbitals. If such
linear ''pseudo-scaling' should prove possible, then nonlinear variations
and scaling would be unnecessary for practical purposes, and atomic
orbital bases of this type would be most attractive for molecular calcu-
lations.

It is with this objective in mind that the ileven-tempered” bases of
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primitive atomic orbitals have been developed. It has been explained in
Reference (17) why it is particularly useful for the purpose of pseudo-
scaling to choose the orbital exponents within an atomic symmetry in a
geometrié progression, namely: if B is the ratio of the progression,
then exact scaling of the primitive orbitals by B does not change this
progression of exponents. The present investigation is concerned with
developing a procedure for adapting an even-tempered atomic orbital basis
to the task of optimally representing scaled atomic self~-consistent-field
orbitals. In trying to achieve this objective one can distinguish two
problems: (1) The optimal choice of the even-tempered primitives and (2)
the optimal choice of superpositions of such primitives to serve as
"ecombined atomic orbitals'', a device that is of particular importance in
working with Gaussian-type primitives. We shall deal with both problems
in turn.

The method to be described can be fully automated for application to
any atom of the periodic table. For example, from a given set of accurate
atomic self-consistent-field orbitals, a set of contracted Gaussian
orbitals with pseudo-scaling properties and appropriate for molecular
calculations can be generated in one uninterrupted computer run. An
application obtained in this manner is given on pages 51-63. As is shown
in Reference (21), the resulting atomic orbital bases have proved

successful in molecular calcuiations.
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Even-Tempered Primitive Basis and Atomic SCF Orbitals
In accordance with Equations (1) to (3) in Reference (17), an even-

tempered basis of primitive atomic orbitals is defined by

k)(2£+3)/25)

- N E. . - k ey, 2
p(k2m|;2 =N, (azsl exp(-a,B,"r)r vzm(o,m). (11)

Two choices of the power £ are of particular interest. The choice ¢ = 1
ylelds even-tempered exponential-type primitive atomic orbitals (ETEPAO's);
the choice ¢ = 2 yields even-tempered Gaussian-type primitive atomic

orbitals (ETGPAO's). The parameters o, and 82 are, in general, different

L
for different £, although the possibility of using the same a and B for
all orbitals in an atom will also be considered below. The symbol Blk
denotes the k-th power of 82. The factors Nle contain the necessary
numerical normalization constants. The Ylm are spherical harmonics.

In Reference (4), close approximations to the atomic self-consistent-
field orbitals in terms of ETEPAO's were discussed in detail. Correspond-
ing approximations in terms of ETGPAO's can be similarly obtained as
shown in Chapter |. For the purpose of the ﬁresent investigation, it is

assumed that such ETEPAO or ETGPAO representations of the SCF orbitals of

an atom are available to start with, viz.,
M
o(ntm|r) = I plkam|r)eclk|ne). (12)
M k=] MA

Our objective is to determine a set of atomic orbitals which contains
these SCFAO approximations @®(n&m) and, moreover, has pseudo-scaling
properties in the sense discussed in the Introduction. In developing a

procedure to achieve this objective, use will be made of another set of
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SCFAO's which are more accurate than the «{nim) by at least an order of

magnitude, in order to assess the degree of accuracy of the pseudo-
scaling basis. These orbitals will be referred to as ''the accurate
SCFAO's'' and denoted by w(nzmlzz. Most desirable for this purpose are
extended expansions of y(nm) in terms of exponential-type primitive
basis orbitals. Both sets, the ¥(n&m) and the «o(n2m), can be obtained by
independent Hartree-Fock-type calculations. Alternatively, excellent sets
*(ntm) are obtainable from the set of '"accurate' y(n2m) by weighted least

mean squares fitting, i.e., minimizing the integral

z fdv[cdnlml&) - w(nzmlggzlr, (13)
no.

with respect to the coefficients and the parameters ¢, and 82. In

L
Reference (17), the weighting factor r"! has been found to yield wave-
functions o that give the best energies.

As has been discussed in a separate investigation (19), there are
reasons to expect that, in a molecular context, orbital scaling is more

appropriate and more effective, if it is not applied to the orthogonal

canonical SCFAO's, but to an equivalent set of nonorthogonal SCFAO's,

which are analogous in character to Slater-type atomic orbitals. We
therefore assume that the orthogonal canonical SCFAO's have been de-

orthogonalized by the procedure described in Reference (19), and that

these nonorthogonal SCFAO's are the ones denoted by m(nlm]r) in Equation
MM

(12). Similarly, the '"accurate' SCFAO's uw{nZm|r) are assumed to be

transformed to nonorthogonal ones by the same deorthogonalization trans-

formation.
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A1l subsequent derivations hold for exponential as well as Gaussian
basis sets, unless the contrary is explicitly specified.
Adaptation of Even-tempered Basis to
the Representation of Scaled SCFAQ's
Our first goal is to modify the original basis of primitives, so
that all scaled nonorthogonal SCFAO's, m(nﬁmlt&), are represented about
as accurately as the unscaled SCFAO's. This presupposes the choice of
certain scaling ranges for the various SCFAO's, T'(n2) <t < T'"(n2), (on
physical grounds and on the basis of experience) within which this goal
is to be achieved. The basis modifications which will be considered are
of two kinds: (1) An increase in the number of basis functions in the
even-tempered sets and (2) changes in the values of the parameters o, -
Because of the importance of the unscaled SCF atomic orbitals we do not
change the parameters 82. The adaptation proceeds in two steps: In
Step |, each SCFAQ is considered separately; in Step Il all SCFAO's within
each symmetry are considered together.
Step | depends slightly on the method by which o {(ntm) was obtained.
If {nim) was obtained by least mean square fitting (see Equation (13)),
then the accurate SCFAO ¥(n&m) is scaled and, subsequently expanded in

terms of the original even-tempered basis of Equation (11).

u

y(nem|tr) o (t,nem|r) (14a)
M M

i

w(t,nﬂm[&) z p(kem{r)c(k|t,ne). (14b)
k M

Here, tr means multiplication by t but, in (t,ntm) and (t,nR), t is to
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be considered as a fourth index. The coefficients c(k|t,n%) are deter-
mined by least mean square fitting with the weighting function r-] as in
Equation (13), so that c(k|1,n2) are the coefficients of Equation (12).
On the other hand, if ® (n2m) was obtained by an independent SCF calcula-
tion, then (n2m) is scaled and expanded in terms of the original even-

tempered basis:
o (nem]tr) = o(t,nem|r) (15a)
M M
o(t,nim|r) = ¢ p(kzmlg)c(klt,nz) (15b)
~ k

and again, the c(k]1,n%) are identical to the coefficients found in
Equation (12). In any event, the scaled-function-approximation contains

the t-dependence in the coefficients. Now the two types of basis modifica-

tions mentioned above are introduced with the objective to obtain a basis

such that the mean square deviation
Alt,ne) = fdv[w(nzmlgx) -cn(t,nﬁmlx)]zlr (16)
has the same order of magnitude for all t within the scaling range,
T'(ne) <t <T"(ns), (17)

which is chosen according to the requirements of the individual problem.
Typically, it is required that A(t,n%) be s 2A(1,n%).

In general, the even-tempered expansion which provides the most
economical representation of the nonorthogonal SCF atomic orbital to a

given accuracy is inadequate to represent the scaled orbitals equally
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well. For example, if Clementi's (ls) SCF atomic orbital of the 3P state
of silicon (18) is expanded in terms of seven even-tempered Gaussians,
the accuracy is a{i,ls) = 8.65 x 10—5. The even-tempered exponent param-
eters are a = 2.35 x 1072 and B = 2.85. When scaled (1s) SCF atomic
orbitals are expanded in terms of these seven ETGPAO's, then the mean
square deviation A(t,ls) has the values given in Figure 7a. The scale
for the abscissa is in terms of [2&n(t)/2n(B)]; the corresponding values
of t are also indicated.

If it is required that the accuracy be maintained over the scaling
range T' = 0.66 < t< 1.52 = T", then it is apparent that ETGPAO's with
higher and lower exponents must be added to the original set of primi-
tives. Due to the even-tempered character, ETGPAO's are readily added
at either the high or low exponent end of the set. By adding ETGPAO's
with large exponents or removing ETGPAO's with small exponents, or both,
contraction of the orbital is favored and the fit is improved for t > 1.
By removing ETGPAQ's with large exponents or adding ETGPAO's with small
exponents or both, expansion of the orbital is favored and the fit is
improved for t < 1. If, in the case at hand, one ETGPAO is added at the
upper end and one at the lower eﬁd, then the mean square deviation
a(t,1s) has the form of Figure 7b, which is still unsatisfactory at the
upper endpoint T'. However, ratner than enlarge the set of ETGPAO's
further by adding another function at the upper end, it is more efficient
to changé the parameter a from its original value of 2.35 x 10-2 to the
value o' = 3.60 x 10-2. This modification results in the curve of

Figure 7c. It is readily verified that the change of a will shift
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the curve with respect to the abscissa [22n(t)/2n(B)] by the amount
[an(a') - 2n(a)1/2n(B) and cause its values to be multiplied by the
factor Ya'/a. It is apparent that we have now the required accuracy in
the entire scaling range. Changing the value of o therefore permits
optimal positioning in the specified range.

A practical way to automatically achieve the best adjustment is as
follows. First, that scaling parameter t' is determined which corresponds
to the left-most point in Figure 7a for which the required accuracy is
satisfied. Secondly, ETGPAO's with higher exponents are added so that
the required accuracy is also satisfied for the scale parameter
t' = ' (T"/T'). In the example of Figure 7a, the lower endpoint, for
which one has aA(t',1s) = 2A(1,1s) = 1.73 x IO-A, is t' = 0.87. The upper
endpoint is then t'' ' = t'(1.52/0.66) = 2.00, and it requires the addition
of two ETGPAO's in order that A(2.00,1s) < 1.73 x 10-4. Thirdly, the
value of o is varied until the difference |A(T',1s) - A(T',1s)]| is mini-
mum. This final step brings the part of the curve which, originally,
was located between t' and t'' into the desired position between T' and
T'". In the example discussed this yields the value a = 1.27 x 10_2,
which results in the curve of Figure 7c. It is seen that A(t,Is) has
practically the same value for t = T' = 0.66 and t = T"" = 1.52. It has
been found that examination of about thirty equally-spaced points in the
scaling range works well for carrying out an adequate adjustment.

This adjustment of the mean square deviation is performed as needed
for all SCF atomic orbitals which are expected to scale. In case the

scaling range of an orbital is sufficiently small, the number of ETGPAO's
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in the original set may be adequate for the entire range so that only an
alteration of a is required.

At this point the various scaled SCF atomic orbitals of the same
symmetry have been expressed in terms of sets of primitives which differ
in the value of o and in the number of ETGPAO's. For example, the
ETGPAO sets for the s-type scaled orbitals of Si(3P) are found to have
the parameters (a],az,aB) given in Table 9. We now proceed to Step II,
namely the elimination of this complication by determining one o, common
to all the scaled SCF atomic orbitals in one symmetry. To this end, it
is expedient first to change the ranges of the indices k],kz,... so that
all the parameters . (in one symmetry) are as close to one another as
possible. The most natural procedure is to keep the smallest @, fixed
and to choose all the others close to it. For example, the sets of
ETGPAQ's of Si(3P) can be relabelled, so that one has the parameter
values (al',az',a3') and (kl',k ',k3‘) also given in Table 9. It is
evident that the set ai' and kil describe the same expansions aé the
parameters o, and ki' Next, the set (a]',az',aB', ...) must be replaced
by one parameter a = a]” = a3“ = a ... in such a way that the deteriora-
tion of the mean square deviation across the scaling range of each SCF

atomic orbital is minimal. The optimal value of a which accomplishes

this is determined by minimizing the total mean square deviation
6(x,2) = Iz A(ti,nz) [T(n2) - T'(n2)]. (18)
ni

The symmetry is denoted by % and the first summation (Z) is over all SCF
n
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Teble 9. Scaling ranges, exponent parameters, and basis size Tor even-
tempered s-type AO's of Si(°P)

Range Range
Orbital Scaling Range e o, of k! a; of k;

ls 0.95 <t < 1.05 2.81 2.72(-2) 6-12 G.76(-3) 7-13
2s 0.70 s t < 1.30 2.87 2.89(-2) 3-9 1.03(-2) 4-10

3s 0.60 < t < 1.40  2.81 1.2h(-2) 1-8  1.24(-2) 1-8
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atomic orbitals in that symmetry. The summation (Z) is taken over the
i

aforementioned 30 equidistant points ti in each scaling range, T‘(nl)_ﬁ

t < T"(n2). A reasonable initial guess of a for this optimization is

the average value & obtained from

ina = (zna]‘ + lnaz' + ...)/ (Number of a's). (19)

For the example of Si(3P), with the set of ETGPAO's labelled by the
values of (k]',kz',kB') in Table 9, the optimal a value is a = 9.20 x
10-3. With this choice the fit in the scaling range of each s-type
atomic orbital becomes quite uniform, as will be shown by a detailed
discussion of Si(BP) on pages 51-63.

The size of the scaling range selected for an orbital determines
the number of even-tempered primitives required to approximate the scaled
SCF orbital to a given accuracy. Therefore, knowledge concerning the
extent of scaling which might occur in a molecular calculation is
essential in keeping the even-tempered basis as small as possible.

The basis obtained by the described method evenly approximates the
scaled SCF atomic orbitals w(nzm[t&) and, therefore, can be used in a
molecular calculation. Since this set is a rather good basis in the
space of scaled SCF atomic orbitals, it is expected that no optimization
of a scaling parameter would then be required in any orbital. In a
molecular calculation, optimization of the expansion coefficients for
the basis would automatically scale the atomic orbitals. This approach

is practical in the case of an exponential-type pseudo-scaled even-

tempered basis. However, in the case of Gaussians, a reasonably good
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primitive basis is usually too large to be used as an explicit expansion
basis, and it is therefore necessary to construct a smaller set of
combined Gaussian functions which, ideally, span almost the same space
as the even-tempered Gaussian primitives. Such a set consists of
functions we cail ""Pseudo-Scaled Combined Even-tempered Gaussian Atomic
Orbitals' (PSCETGAO's). The determination of this basis is the topic of
the next section.

It may be added, that the method is readily extended to the case
that o and B are assumed to be independent of %. In this case the sum-
mation of Equation (18) must also be taken over all 2 values.

Construction of a Reduced Pseudo-Scaling
Basis by Combination of Primitives

The number of PSCETGAO's chosen to represent each SCF atomic orbital
in scaled and unscaled form is a matter of judgment, weighing the
accuracy to be obtained against the amount of calculation to be performed.
A set consisting of three PSCETGAQ's for a valence shell SCFAO, and two
PSCETGAO's for an SCFAO from the next inner shell should provide good
representations in most cases.

The PSCETGAO's related to a particular SCFAO w(n2m|;) should be
selected to obtain optimal 'pseudo-scaling' opportunity for that SCF
orbital. This can be achieved as follows. One chooses, say, 20 evenly
spaced values ts of the scaling parameter in the applicable range
T'(n2) <t < T"(n2), including the value t = 1, and determines by least

mean squares the 20 expansions
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Y(ngm|t.r) = ot ,nem|r) (20a)
» ! M
o (t.,nam{r) = % p(kem|r)c(k|t,,nge), (20b)
J M k " 1

in terms of the primitive basis found in the previous section. These 20
nonorthogonal functions span a certain function space. In this function
space, an orthogonal basis xv(an]r) is then determined by ''canonical

M

orthonormalization'' (22) which is given by

-

xv(nzmlx) =D, *z m(ti,nlmlx)Tiv(nz). (21)

i

Here, the Tiv are elements of the orthogonal matrix J and Dv are elements

of the diagonal matrix D, obtained by diagonalizing the matrix of overlap
N

integrals

Sij = '(m(ti,nzm) [@(tj,nzm)§ ,

i.e., D and T are determined from
MM M

D=T'ST.

M ML MM
If M is the number of primitive ETGPAO's, then (20-M) eigenvalues D, are
rigorously zero, so that exactly M orthogonal functions span the space
of the M ETGPAO's. Furthermore, however, most of the remaining M eigen-
values are small (< 10-6), indicating that the corresponding x 's are

less important for the representation of the m(ti,nlm), because from

Equation (21) follows

”(ti,nlm) = 5 )(V(nSZ.m)T\)iD\);i . (22)
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For example, in the case of the (2s) orbital of Si(3P) expanded in terms
of seven ETGPAO's, the eigenvalues shown in the first row of Table 10
obtained. The first three atomic orbitals Xy (v =1,2,3) are usually
found to be much more important than the rest. In any event, if z
PSCETGAO's are to be generated for a given SCFAQO then the z canonically
orthonormalized AO's Xy (v=1,2, ... z) corresponding to the largest
eigenvalues Dv (v= 1,2, ... z) are chosen.

If the scaling range is chosen to be nearly symmetrical around
t = 1, then the orthogoﬁal orbital Xy corresponding to the largest eigen-
value D] is very close to the unscaled SCFAO, ®(t = 1,n&m). For molecular
calculations it is, however, desirable that the unscaled SCFAQO itself
be one of the PSCETGAO's. This can be accomplished by the following
modified procedure. After determining the 20 scaled SCF atomic orbital
approximations w(ti,nlm) given in Equation (20b), the approximate un-
scaled SCF atomic orbital is chosen as the first of the orthogonal xi's,
i.e., x](an) = o(t = 1,n2m). Each of the remaining 19 orbitals are

Schmidt orthogonalized to Xq» which yields the orbitals
N 2.\ -%
o(t,,nem) = [o(t,,ntm) - Q;x, (n2m)](1-0,%) *, (23a)
Q; = (olt,,ntm)|x; (nem)> .

In the space spanned by these 19 orbitals, 5(ti,n2m), an orthogonal basis
is now found by canonical orthogonalization as described previously. The
orthogonal orbitals corresponding to the largest eigenvalues are then
added as xz(nlm), x3(n2m), etc. to x](nlm). The second row of Table 10

shows the D\J obtained in this manner. This orthogonal PSCETGAO basis



Table 10. Eigenvalues for canonically orthonormalized (2s) AD's of Si(3P)

D, 1.9(+1)  7.9(-1)  1.5(-2) 1.4(-&) 3.2(~7) 1.8(-10) 3.8(-15)
D, 1.9(+1)  &.b(-1)  4.3(-3)  1.I(-5)  5.9(-9) 9.5(-14)

3canonical orthonormalization including unscaled 2s AO.

Canonical orthonormalization after projecting out unscaled 2s AO.

6%
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exhibits an improved fit to the scaled SCF atomic orbitals in the
neighborhood of t = 1.

Application of this procedure to each SCFAO belonging to one sym-
metry yields a certain number of PSCETGAO's for each of them. For ex-
ample, in the case of Si(BP) it might be reasonable to construct the
following six PSCETGAO's for a molecular calculation: x](ls), x](Zs),
xz(Zs), x](35), x2(3s), x3(3$). The primitive basis contained 12
ETGPAO's so that this method of contraction has reduced the basis size
by a factor of two. The orbitals x](Zs) and x2(2$) are mutually
orthogonal and so are the orbitals x](3s), x2(35), and x3(3$). But
the orbitals originating from different SCFAO's are not orthogonal to
each other. In fact, they maintain the character and advantages of the
nonorthogonal SCFAO's discussed previously and in Reference (19).

While the orbitals X1(3S), x2(35), and x3(35) have been chosen to
provide a reasonable approximation to the scaling of the SCFAQ x](3s) as
well as the accurate SCFAO u(3s), additional assistance in the representa-
tions of these scaled SCFAO's is obtained in a molecular calculation
from the orbitals x](1s), x](Zs), and x2(25). The same holds con-
versely for the orbitals x](ls) and x](Zs). The amount of this 'pseudo-~
scaling assistance'' should be taken into account in trying to keep the
number of PSCETGAO's as small as possible. The accuracy to which a
specified number of PSCETGAO's approximates all scaled SCFAO's of the
same symmetry can be assessed by computing the least mean square devia-

tions for the expansions,

w(nzmlti&) = ﬁi xv(n2m|£)cvn(ti) = ;(ti,nzm). (24)
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The deterioration resulting from the basis reduction introduced in this
section can be assessed by computing the least mean square deviations
for the -expansions

m(ti,n£m|;) = 3 xv(nnmlg)C'vn(ti) = m(ti,nzm), (25)
where m(ti,nzm) are the functions of Equation (20b). Inspection of the
mean square deviations corresponding to these equations can be used to
determine the minimum number of PSCETGAO's, consistent with a given

accuracy.

Application to Silicon

As an explicit illustration of the method outlined in the preceding
sections, we shall describe the quantitative results which are obtained
by an application to the 3P state of Silicon. As accurate SCFAO's, the
extended expansions in terms of Slater-type exponential primitives given
by Clementi (18) will be used. From these a scaling basis in terms of
even-tempered Gaussian primitives will be constructed.

The first step is the deorthogonalization of the accurate SCFAOQ's.
Table 11 gives the expansion of these nonorthogonal A0's and the expec-
tation values of r-z, r-l, r, rz and -V2/2 for each orbital. Also given
Is the triangular matrix which Schmidt ortﬁSQOﬁallzes the nonorthogonal
SCFAO's back to the canonical SCFAQ's.

The second step is the construction of the approximations q(nim) of
Equation (12) to the accurate nonorthogonal Y(ngm). In the present case,

they are formed by least mean square fitting in terms of a set of seven

even-tempered Gaussian primitives, according to Equation (13). The
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Table 11. Accurate nonorthoaonal SCFAO's for silicon “P state

Expansions of Nonorthogonal SCFAO's in Terms of Slater-Type Basis

Basis AO's® : Basis AO's®
1S 2S 3S 2P 3p
s 0.969154 -0.000000 - 0.002300 2p 0.558378 -0.00003)
3s 0.031580 0.005153 0.000947 Lp 0.000290 -0.001417
3s 0.019780 0.125099 -3.005641¢4 Lp 0.037140 0.004787
3s -0.005980 0.351428 0.008854 Lp 0.292719 -0.009192
3s 0.002859 0.551582 -0.047944 Lp 0.229149 0.058035
3s -0.001110 0.042041 -0.0345631 Lp 0.010010 0.472486
3s 0.000660 ~-0.013872 0.,589581 Lp -0.002460 0.562153
3s -0.000140 0.002390 0.503113 Lp 0.000940 0.042021

Orbital Expcctation Values

(W/rery 372.297237 6.138804 0.356603 8.520219 0.248832
/v 13.5805006 2.211660 0.546804 24456409 0.46479332
') 1.,000000 1.0032309 1.000000 1.000000 1.0003000
(r) 0.111431 0.550695 2.156879 0.535388 2.705821
(rer) 0.016701 0.360941 5. 426097 0.359647 8.703871
(rer.r) 0.0031%57 0.276392 15.747451 0.29316¢9 32.723675
(-3v.v) 92.235842 2.813916 0.285599 12.198042 0.612403

Orthogonalization Matricesb

1.000000 0.0 0.0 1.000000 0.0
-0.266078 1.034794 0.0 -0.212525 1.02233¢4
2.068126 -0.277756 1.035402

(4

aSlater—typc basis AO's are those of Clementi's (Ref. 18 Table 1-6).

bTransformation by these matrices yield Clementi's orthogonal SCFAO's from the nonorthogonal ones
given here.
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resulting values of a and 8 and the expansion coeffiéients are shown in
Table 12. Also given are the mean-square deviations from the y(n2m), and
the differences in the expectation values from those obtained for the

¥ (ngm).

In the third step, the even-tempered basis of Gaussian primitives
is adapted to the scaled SCFAO's, as discussed on pages 38-46. The
results are displayed in Table 13. For each SCFAO, seven expansions are
given, corresponding to seven different values of the scale parameters.
The scaling range is different for different SCFAO's as indicated. The
expansion basis is that of the optimal even-tempered Gaussians, de-
termined in this step. [t should be noted that this adapted basis now
consists of 13 s-type primitives, and 11 p-type primitives. The mean
square deviations from the scaled y(n2m)'s are also listed and exhibit
the desired uniformity.

In the fourth step, the procedure described in the previous section

is used to finc a reduced set of superpositions of even-tempered Gaussian

AQ's with pseudo-scaling character. Table 14 shows expansions for the
first seven orthogonal orbitals x](nzf, xz(nz) - x7(n2) for (ng) =
(1s), (2s), (3s), (2p), (3p). The orbitals xl(nl) are the unscaled
SCFAO «(n%). The remaining ones are obtained by canonical orthogonaliza-
tion after o(nf) has been projected out. For each of the latter the
eigenvalues D are also given, showing that xh(nl), xs(nz) ... are
negligible in expanding the scaled ©(n%). For this reason the functions

x8(n2), x9(n£), - x]9(n2) are not even listed.



Table 12. Seven-term even-tempered Gaussian expansions of nonorthogonal SCFAO's for
Stlicon 3P State
Expansions of Nonorthogonal SCFAQ's
Exponentsa 18 2S as Exponentsa 2P 3p
es (1) 0.0 0.0 0.382459 p(1) 0.0 7.308421
Cs(2) 0.0 0.0 0.725455 ¢p(2) 0.0 0.5551689
Gs(3) 0.0 0.073345 0.0069¢7 Gp(3) 0.017223 0.26959¢
¢s(h) 2.0 0.637¢9) -3.185345% Cp(l) 0.254810 -0.2007%9
gs(5) 0.0 0.429100 -0.013728 Cp(5) 0.481450 -0.011213
s (6) 0.226243 -0.086404 -0.030513 Cp(6) 0.2104°3 -2.004124
&s(7) 0.472195 ~0.074612 0.932183 Ep(7) 0.114874 -0.000911
¢s(8) 0.298009 -0.014046 0.0 Cp(8) 0.02464) 0.0
¢ (9) 0.106¢088 -0.002303 0.0 €p(9) 0.027832 2.0
Gs(10) 0.037096 0.0 0.0
G (1) 0.006192 0.0 0.0
Gs(12) 0.00%5272 0.0 2.0
Al )b Comparison of Expectation Values with Slater-type Basis
All/rer)  1.510518 0.000211 0.020014 0.00€2¢9 -0,0099013
a1 /r) -0.000134 0.000021 0.939932 0.000046 -0.000013
a1y 0. 000000 0.00003) ~0.022939 -0.000232 0.0%0930
A 0.000018 ~0.000057 -0.000498 -0.0000127 0.00023¢
alrer) 0.000015 -0.000058 ~0.004604 ~0.03005%1 0.004211
alrerer)  0.000011 0.000097 ~0.0364945 0.00015) 9,077502
A{-}v'v) =-0.023209 ~0.000446 -0.000034 -0.000865 ~0.000069
MSQ-DEV®  9.38 (-5) 2.02(-5) 8.49(-6) 2.57(-5) 1.09(-5)
Orthogonalization Matrices
1.000000 0.0° 0.0 1.090000 0.0
~-0.263774 1.034206 0.0 -0.21142) 1.022107
0.068068 -0.277354 1.035340 :

3The exponents are ¢s(k) = asﬂsk and ¢p(k) = p
&g = 2.80928783, o, = 2.14108095(-2), Fp = 2.73

b

k, with the paramecter values: Qg = 2.77079913(-2),

50558,

bA( ) denote the differences in the expectation values calculated for the expansions given in Tablell 2ad
those given in this table.

cHSQ-DEV denotes the mean square deviation between the orbital expansions given in Tablell and those of

this table.

ns



Table 13. Even-tempered Gaussian expansions of scaled non-
orthogonal SCFAO's
Expansions of Scaled Nonorthogonal 1s Orbitals
Scale Parameter t =0.95 t =0.97 t =0.99
a
Exponents
¢s(7) 0.24L0488 0.222588 0.205742
Cs(8) 0.470674 0.472455 0.472917
Cs(9) 0.290717 0.299952 0.309307
Cs(10) 0.102148 0.107126 0.112077
Cs(1) 0.035764 0.037458 0.039248
Cs(12) 0.005911 0.006265 0.006612
Cs(l3) 0.005068 0.005327 0.005598
#sQ-DEV® 9.23(-5) 9.06(-5) 9.23(-5)

Scale Parameter
Exponentsa

¢s (L)
Cs(5)
¢s(6)
¢s(7)
¢s(8)
¢s(9)

Expansions of Scaled Nonorthogonal 2s Orbitals

G (10),
MSQ-DEV

Scale Parameter

Exponents‘

¢s(1)
¢s(2)
Gs(3)
Cs(4)
Cs(5)
Cs(6)
Cs(7)
Cs(8)

MSQ -DEV

Expansions of Scaled Nonorthogonal 3s

b

®The exponents are Gs(k) = o 8
the parameter values:

o = 7.58704242(-3), 8

b

t =0.70

0.421567
0.6k2473
0.038486
-0.107620
-0.028681
-0.004112
-0.000549
1.84(-5)

t = 0.60

0.324274
0.749256
0.060962
-0.1978%4
-0.020183
-0.000432
0.002244

0.000050
6.12(-6)

t = 0.82

0.213860
0.713627
0.209515
-0.116265
-0.048239

«0.007483

-0.001147
1.70(-5)

t =0.76

0.083136
0.678224
0.440395
-0.198995
-0.086696
-0.000106
0.001285
0.000849

L.96(-6) -

and C (k) =
ag = §.30023221(-3), 8
S 2. 73980558.

MSQ-DEV denotes the mean square deviation between the scaled
nonorthogonal SCFAO's and the orbital expansions of this table.

t =0.94

0.091180
0.659096
0.392818
=0.095494
-0.069813
‘=0,012729
«0.002044
1.72(-5)

Orbitals

t =0.92

0.004866
0.451140
0.686L67
-0.051844
-0.167149
-0,008173
=0.000310
0.001937
6.52(-6)

, with

p- 2.80928783,
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Expansions of Scaled Nonorthogonal 1s Orbitals

t =1.00

.197703
472684
.314011
114548
.0L0176
.006783
.005739
.5o(-5)

WOOOO0OO0OO0OO

Expansions of Scaled

t = 1.00

0.053467
0.606087
0.474316
-0.071887
-0.080931
-0.015893
-0.002688

2.30(-5)

Expansions of Scaled Nonorthogonal 3s Orbitals

t =1.00

~0.006203
0.340999
0.740284
0.056537
-0.197956
-0.018417
-0.000812
0.002393
8.97(-6)

t = 1.01

0.189911
0.472157
0.318723
0.117017
0.041125
0.006954

0.005881.

9.62(-5)

t =1.06

0.027332
0.544564
0.544676
-0.039957
-0.091652
«0.019425
-0.003482
2.89(-5)

t=1.08

-0.008861
0.245957
0.754357

0.173751
-0.216662

-0.033244
«0.001141
0.002761
1.03(-5)

—~—O0O00O0OO00O0O

t=1.03

.175052
470270
.328150
.121957
.0L43083
.007293
.006175
.02(-4)

Nonorthogonal 2s Orbitals

t =1.18

-0.000420
0.413831
0.64664L9
0.044598

-0.109718

-0.027673

-0.005549

© 3.20(-5)

t=1.24

-0.,004506
0.108561
0.696389
0.400427

-0.210470

-0.074159

-0.002229
0.003298
9.48(-6)

t =1.04

.167975
.L68931
. 332851
124432
.0L44090
.007463
.006326
.05(-4)

0000000

t=1.24

-0.006099
0.350748
0.6778u43
0.094539

-0.116036

-0.032400

-0.006836
2.97(-5)

t = 1.32

=0.001466
0.064010
0.640428
0.498128
-0.185508
-0.098008
=0.003635
0.003529
9.37(-6)




Table 13.

(Continued)

Expansions of Scaled Nonorthogonal 2p Orbitals

Scale Parameter

Exponentsa
Ip(h)
sp(5)
<p(6)
Cp(7)
Cp(8)
Cp(9)
Co(10)
Cp(11)

MSQ-DEV

Expansions

Scale Parameter

Exponentsa
ce(1)
tp(2)
¢p(3)

. Cp(k)

" Ep(5)
gp(6)
¢o(7)
2p(8) |

MSQ-DEV

t =0.70

.155807
.L457092
.387761
164812
044172
.0095932
.001629
.0004 34

.50(-6)

OO O0OO0O0OO0OO0OO0O

of Scaled Nonorthogonal 2p

t =0.60

0.300083
0.556637
0.275543
0.000856
-0.011350
-0.004511
=0.000685
-Q,000147
6.24(-6)

t =0.82

.069479
.387983
.1147893
.227982
.069518
.015618
.002873
.000727
11(-6)

WOO0OOO0OO0O0O0O

t =0.76

0.100561
0.506056
0.450957
0.089942
-0.019669
-0.005628
-0.002263
-0.000262
3.52(-6)

t = 0.94

0.026132
0.298966
0.477289
0.289790
0.100181
0.023704
0.004573
0.001154
1.35(-5)

Orbitals
t =0.92

0.018359
0.364197
0.544746
0.215191
-0.010873
=0.009258
~0.003636
-0.000657
9.47(-6)
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Expansions of Scaled Nonorthogonal 2p Orbitals

t =1.00

0.014608
0.254904
0.480480
0.319070
0.116984
0.028649
0.005584
0.001433
1.49(-5)

t =1.06

0.007479
0.213530
0.476818
0.346675
0.134537
0.034216
0.006708
0.001762
1 -51"'("5)

t=1.18

0.001459
0.142259
0.452483
0.395393
0.171266
0.047189
0.009334
0.002578

1.53(-5)

t=1.24

0.000817
0.113032
0.433708
0.4159L4
0.190146
0.054558
0.010858
0.003071
1.59(-5)

Expansions of Scaled Nonorthogonal 3p Orbitals

t =1.00

0.002194
0.290398
0.559359
0.279795
0.002965
-0.012030
-0.004094
-0.001009
9.91(-6)

t =1.08

-0.00L4672
0.222666
0.556271
0.340683
0.023570

-0.015025

-0.004437

-0.001459
7.63(-6)

t=1.24

-0.004279
6.114337
0.511100
0.1442530
0.081973

-0.019587

-0.005125

-0.002585
5.16(-6)

t =1.32

-0.001333
0.07L688
0.475567
0.481316
0.117567

-0.020061

-0.005648

-0.003214
7.37(-6)




Table 14,

Canonically orthonormalized AO's (COAO's) In terms of
even-tempered Gausslans

ts(n)b
¢s(8)

¢s(9)

¢s(10)
¢s(11)
€s(12)
¢s(13)

COAQ's for the Scaling of Nonorthogonal 1s SCFA0's?

Xl(ls)

1.977025Dh-01
4.726839N-01
3.1401050-01
1.145477D-01
4.0175970-02
6.783402D=-03
5.7385010-03

Eigenvalues

CS(h)b
€s(5)
{s(6)
Cs(7)
Cs(8)
s (9)
Cs(10)

Xz(ls)

9.342017D-01

3.964363D-02
-2.515978D-01
-2.902590D-01
~-1.098082D-01
-2.0136250-02

-1.656562D-02,

:1.8992929 01

x3(!S)

1.674945D 00
-2.380565D 00
7.079911D0-01
2.7646489D-01
29854%30-01
1.072281D0-02
4.1503570-02

7.0796660D=-03

COAO's for the Scaling of Nonorthogonal 2s SCFAO's®

x](zs)

53466520~-02
6.050859D~01
4.743164D-01
~7.1R8687D-02
~-8,093083ND=-02
-1.5892600~02
=-2+687931D-03

Eigenvalues

Cs(1)°
Cs(2)
Cs(3)
Cs (4)
Cs (5)
Cs(6)
Cs(7)
¢s(8)

Xz(zs)

5.225015n-01
7.448024D0-01
-1.057106D QO
=3.964532D~-01
1.4961470-01
4.883971D-02

1.0716400-02

1.855340D0 01

XB(ZS)

-1.488977D 00
15026810 09
3.7456310-J1

~1.2545300 00
84229286D-02
9,068193D-02
2.732796D-02

4.422R98D-01

COAO's for the Scaling of Nonorthogonal 3s SCFAQ's®

x; (35)

-6.202819D-03
3.409994D-01
7.402843D-01
5.6536€630-02

=1.979563D0-01

-1.8641730D-02

-8.1237680~-04
2.3926820-03

Eigenvalues

Xz(Bs)
1.4959460-01

9.8050960-01 -

-3.863597D0-01

-1.0512270 00

2.0522060-01
1.302314D-01
5.694416D0-03

-4,061703D-03"

1.9126110 01

x3(35)
-840471520-01
=-3.05139385=01
1.866259D 00
~14356124D 00
-4.343989D-01
3.467421D0-01
1.262867D~03
le266426D~06

8.5257110-01

°The scaling range is the same as that examined in Table 13.

bThe orbital exponents are identical with those in Table 13.
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COAQ's for the Scaling of Nonorthogonal s SCFAO's?

Xh(‘s)

~1.2456550
31783940 02
=3.5669210 0O
17782620 22
=7.536262D-22
2630769D~-21
38065880-0D2

00

7.1075530-07

COAQ's for the Scaling of

XQ(ZS)

-1.582343D 00
3.3771650 32
-3.43371640 22
1.55254%20 22
3,7075760-01
-1.323744D=)1
=5,2792300-02

4.302255p-03

COAQ's for the Scaling of

X4(3S)

-1.6602250D 00
2.494210D J0
=1.1940270 N0
-8.63281430-01
1.761763D 20
~-54334921D-21
-3.13856447D-02
~4.,622539D0-03

2.12155K69N=-02

xs(‘s)

5.086197D-01
=1.7559860 03
3.440003D 0O
-%.136726D 00
2.5410970 0O
~4.379197D-01
3.283079D-01

1.7519610-11

x5(25)

7.198530n-01
~2.0962710 J)
3.5501620 00
-6,303903D 2)
3.218534H 00
-5.830585D-01
-2,09%5107n=)2

1.1005250-05

x5(35)

-1.3807650 00
3.2130870 00
-4.191417D 00
3.313309D0 22
=2.2%220%D 920
-9,2271450=-02
3.3994764D-01
~2.936325D-02

3.053512D0-04

X6(‘S)

5.979137n=-01
-1.753321D 00
3.437702D 00
-4.190272D 00
2.5549550 00
~4.4930950-01
3.2643030-01

1.7627150-16

Nonorthogonal 2s

x6(25)

2276391D-01
~7.5551590-01
1.626%343D 00
=2.8362850 00
4.0095030 00
-3.716905D 00
1.0870920 32

$5.938084D-09

Nonorthogonal 3s

xg (39)

-6.802968D0~01
13743537 Q2
-2.4304860 00
3.571322D 90
=4,4889900 0N
4.152642D 00
=1.55%68987D 2
1.7505350-01

135322RD=26

x; (1)

~5.080627N-01
1.763931D 23
-3.4350510 00
4.1771100 00
-2.528626D 03
4.304430D-01
~3.2885290-01

1.1652590-14

SCFAO's?

x7(25)

~66546231D~02
-4,7880490-01
9.050863D-01
-1.578779D0 02J
2.330511D 00
-2.0921090 02

9.509236D-14:

SCFAQ's®

x7(35)

9.774118D-02
-3.1623250-01
6.5749100-01
=1.199553D 0)J
2.0816560 02
-3.254273D0 09
3.7445450 3)
~1.4042190 02

5030'00“70-10




Table 14,

(Continued)

¢p (4)°
Go(5)
Cp (6)
Cp(7)
Gp(8)
&p(9)
Gp(10)
Ep(11)

COAQ's for the Scaling of Nonorthogonal 2p SCFAQ's®

X](zp)

1.4507<)30=-02
256090407°-01
4.R047950-01
2.,1305990-01
l1.16¢83eN-01
2.8649110-02
5.583924D-03
1.4330435-03

Eigenvalues

Cp(l)b
Cp(2)
ep(3)
Cp(bg
Cp(5
Cp(6)
&p(7)
Cp(8)

Xz(zp)

1.914064D-01

£e947797D-01
-3.473185D-03
~44h662770-01
-2.8459830-01
-8.844987D0-02
-1.806997D-02
-5.187261Nn-03

1.8645640 01

x3(2p)

~8.054614D-01
-5.110891D0-92

8.822731D-01
~2.256492D-01
-3.980368D-01
~1.8257097-01
-3.587253D-02
~1.2774590-02

3.5083610-01

COAQ's for the Scaling of Nonorthogonal 3p SCFAO's®

xl(3P)

2.1944493-03
2.30228210-01
5.5035969-01
2.79795095-01
2.3%49575-03
-1.272007D-02
=4.,0939¢€05-03
-1.008%12D-03

Eigenvalues

X2(3p)

1.8810590-01
7.2551200-01
-8.034774D-02
-6.4276340-01
-1.9146139-01
2.6204980-02
4.9550760-03
4.330660D-03

1.82063000 01

x3(3P)

-8.1630130n-01
-1.587786D-02
9.058927D-31
-3.670128D0-01
~-5.643322D0-01
3.169046D-02
~-6.2395143-04
9.784J000D-03

7.8058600-01
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COAO's for the Scaling of Nonorthogonal 2p SCFAD's?

%, (2P)

-1.301325D0 00
1.827515N0 232
-R.69C0790~-01
=3.4364047-01
3.5952420-01
3.0659350-D1
65.564210D0-02
2.6029230-02

3.5105%3D0-23

x5(2P)

T.934%6702-01
=1.5%3248172 00
2427140370 00
=1l.R43G9453 00
3.8850220-01
3.922727D-91
2.0730853~01
4.%945893D3-02

1.2531170-05

COAC's for the Scaling of

xq(3p)

~1.1979460 09
1.573113) 90
-5.9773420-01
-6.763532D-01
9.2514123-01
9.$301320-02
-1.5137890-02
-1,3272230-02

1.630202D-02

x5(3p)

8.3252340D-J1
=-1.772897D 920
22957600 20
=1.%4922410 20
7.9510%2D-02
9.632329030-01
-1.788739D-01
1.1309200-n2

1.0859364D-04

xé(zp)

=-2.7090150-01
Be?2497342-01
~1.5833750 Q9
22712943 0D
~-2.192276N 00
8.5421550-01
3.2369200-01
1.958512D-01

6.739255n-09

x6(3p)

5.0755810-01
-1.327249D 00
2.102183p €O
=-2.709185D 30

2.2153389 00 -

-1.9331860 0O
3.335539D0-01
-5.982436D-02

9.536024D-07

77(29)

Q.2560374D-02.
~3.08%A5717-01
6.947213N=01
=1s733%18D2 0D
1.9737170 00
=-2.058538D 0D
8.C757060-01
5.6903630-01

4.361052N-13

Nonorthogonal 3p SCFAO's®

y7(3p)

-T.7TC4700n~-02
2.2550200D-01
-4,525724)3-01
84.1554820-01
-1.4350339 0D
242312920 00
~2.2823859 J)
4,9723540-01

1.428384N-09
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From the orbitals shown in Table 14 we select x](ls),xl(Zs),xz(Zs),
x,(35).x2(35).x3(35).x|(29),x2(2p),x](3p).x2(3p).x3(3p).
basis of pseudo-scaling combined functlons. As a test of the efficiency
of this set, the expansions of Equation (25) are carried out by least
mean squares fitting of the coefficients. The resulting expansions are
listed in Table 15. Also listed are the corresponding least mean square

deviations

LMSQD = de{m(ti,an) - &(ti,nlm)}zlr.

Here the sum 6ver v=1,2, ... P extends over all basis functions from
row | to row P, if the LMSQD's are listed in row P. Thus, the LMSQD's
listed in the last row correspond to the expansion whose coefficients are
listed. This does not hold, however, for the LSMQD's in the preceding

rows, since the basis functions are not all orthogonal to each other.

Effectiveness of Pseudo-Scaling
It is desirable to have a test of the effectiveness of pseudo-
scaling with respect to the energy. Two such tests, which moreover are
closely related to the validity of the virial theorem, are the following.

If an atomic orbital f(r) is truly scaled, i.e.,

f . 32

t f(tl’), f] = f(l"),

then the following relations hold

-1 -1 o -1
t (ftlr | £, —(f||r £

-2 2 2
t (ft|-35v |ft> =(f]|-35\7 |f,3 ,



Table 15. Expansions of scaled nonorthogonal SCFAO's in terms
of reduced basis for silicon 2P state

Expansions of Scaled Nonorthogonal 1s Orbitals

t =0.95 t =0.98
Coeffs. MSQ-DEV Coeffs.  MSQ-DEV
x; (1s) 0.9759  1.9(-3) 0.9907  3.0(-b)
x,(Zs) -0.0000 1.4(-3) -0.0002 2.2(-4)
XZ(ZS) -0.0608  7.7(-4) -0.0239 1.2(-4)
xl(3s) 0.0295 7.0(-4) 0.0116 1.1(-4)
XZ(BS) -0.0294 5.9(-4) -0.0116 9.7(-5)
X3(35) -0.0181 4.8(-4) -0.0072 7.9(-5)

Expansions of Scaled Nonorthogonal 2s Orbitals

t =0.70 t = 0.88
Coeffs. MSQ-DEV Coeffs,  MSQ-DEV
Xl(zs) 0.7916 1.6(-1) 0.9749 2.1(-2)
XZ(ZS) 0.2336 1.1(-2) 0.1314 1.5(-4)
x](ls) 0.0122 9.3(-3) 0.0035 T.1(-4)
X1(35) 0.1610 5.0(-3) 0.0162 7.1(-5)
%o (3s) ~0.1341  1.8(-3) -0.0i44  4,0(-5)
x3(3$) -0.6643  4.0(-4) ~0.0076 1.9(-5)

Expansions of Scaled Nonorthogonal 3s Orbitals

t = 0.60 t =0.84
Coeffs. MSQ-DEV Coeffs. MSQ-DEV
X (3s) 0.8621  3.3(-1) 0.9690 4.6(-2)
x2(3s) 0.4778  L.9(-2) 0.2219 5.8(-4)
x3(3s) -0.2624  1.7(-3) -0.0151 5.3(-5)
X](ZS) -0.0675 1.2(-3) 0.0121 3.8(-5)
XZ(ZS) -0.0566 6.2(-4) 0.0102 1.9(-5)

X|(ls) -0.0071  5.8(-4) 0.0013 1.8(-5)
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Expansions of Scaled Nonorthogonal ls Orbitals

t = 1.00 t = 1.02 t = }.04
Coeffs. MSQ-DEV Coeffs. MSQ-DEV Cocffs. MSQ-DEV
~ 1.0000 0.0 1.0088 2.8(-4) 1.0171  1.1(=3)
0.0 0.0 0.000k 2.1(-4) 0.0010 8.5(-4)
0.0 0.0 0.0233 1.2(-4) 0.0461  5.0(-k)
0.0 0.0 -0.0114  1.1(-4) -0.0226  4.6(-L)
0.0 0.0 0.0114 9.8(-5) 0.0225 - 4,0(-4)
0.0 0.0 0.0070 8.1(-5) 0.0140  3.3(-4)

Expansions of Scaled Nonorthogonal 2s Orbitals

t = 1.00 t=1.12 t=1.24

Coeffs. MSQ-DEV Coeffs. MSQ-DEV Coeffs. MSQ-DEV
1.0000 0.0 0.9721 1.7(-2) 0.9097 5.9(-2)
0.0 0.0 -0.1506  2.5(-k) -0.3017  2.5(-3)
0.0 0.0 0.0025 2.1(-4) 0.0126  1.9(-3)
0.0 0.0 _ 0.0238 1.2(-4) 0.0701 l.2(-3)
0.0 0.0 -0.0202 4.,9(-5) -0.0611  5.9(-4)
0.0 0.0 -0.0100  1.4(-5) =0.0315  2.4(-4)

Expansions of Scaled Nonorthogonal 3s Orbitals

t =1.00 : t=1.16 t=1.32
Coeffs, MSQ-DEV Coeffs. MSQ-DEV Coeffs. MSQ-DEV
1.0000 0.0 0.9843  3.3(-2) 0.9269 1.1(-1)
0.0 0.0 -0.1813  9.8(-kL) - «0.3026 8.5(-3)
0.0 0.0 -0.0326 1.3(-6) -0.0754  1.9(-4)
0.0 0.0 -0.0022  3.8(-7) 0.0251  1.1(-%)
0.0 0.0 -0.0012  5.3(-8) 0.0194  3.8(-5)

0.0 0.0 <0.0001  5.0(-8) 0.0021  3.5(-5)




Table 15. (Continued)

Expansions of Scaled Nonorthogonal 2p Orbitals

t =0.70 t = 0.88
Coeffs, MSQ-DEV Coeffs. MSQ-DEV
Xi(ZP) 0.8683 1.2(-1) 0.9840 1.6(-2)
% (29) 0.2337 6.7(-3)  0.1sh  8.4(-5)
v, (30) 0.1038 3.9(-3)  0.0103  6.3(-5)
xz(BP) -0.0901 1.6(-3) -0.0099 3.9(-5)
x3(3p) -0.0480  5.4(-4) -0.0061 2.2(-5)
Expansions of Scaled Nonorthogonal 3p Orbitals
t =0.60 t = 0.84
Coeffs, MSQ-DEV Coeffs, MSQ-DEV
¥, (39) 0.8632 3.0(-1)  0.9756  4.0(-2)
7 (3P) 0.4750  4.0(-2) 0.2042  4.5(-4)
%5(3p) -0.2253 1.1(-3) -0.0156  3.4(-5)
X](Zp) -0.0392 8.3(-4) 0.0070 2.6(~5)

"y, (2p) -0.0367 L.0(-4) 0.0066  1.2(-5)
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Expansions of

t =1.00
Coeffs. MSQ-DEV
1.00 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

Expansions of

t = 1.00
Coeffs. MSQ-DEV
1.00 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

Scaled Nonorthogonal 2p Orbitals

t=1.12 t =1.24
Coeffs. MSQ-DEV Coeffs, HSQ-DEV
0.9830 1.3(-2) 0.9440  4.5(-2)
-0.1265 1.5(-4) -0.2538  1.5(-3)
0.0151  9.3(-5) 0.0452 1.0(-3)
-0.0135  4.5(-5) -0.0422  5.9(-k4)
-0.0075  1.8(-5) -0.0243  2.9(-4)

Scaled Nonorthogonal 3p Orbitals

t=1.16 t =1.32
Coeffs., MSQ-DEV Coeffs. MSQ-DEV
0.9861 2.9(-2) 0.9407 <.8(-2)
-0.1695 7.8(-4) -0.2912  6.8(-3)
-0.0289 9.9(-7) -0.0716  1.4(-4)
-0.0015  &4.4(-7) 0.0152 2.3(-5)
-0.0011  4.4(-8) 0.0134  3.5(-5)
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where the right hand side is independent of the scale parameter t. It is

therefore illuminating to examine the relative deviations

AV (ng) = [t o (t,n) | r o (t,n2)) = (olne)|r o (ne)y1/
(o (n2) |r~ 1| ®(n) (26a)
aT(ne) = [t %o (t,n) |57 [0 (t,n2)) - (2(n2)|-4v%]p (ne)> 1/

(e (n2) |-5V2 | o(n2) (26b)

as t varies over the scaling range. Here o(n&) are the even-tempered
SCFAQ expansions of Equation (12) and ;(nl) are the even-tempered
expansions of the scaled w(nkm[tr). Such a test is displayed in Table
16 for the (1s), (2s), (3s), (2p), and (3p) orbitals of Silicon dis-
cussed in the preceding section.

Two cases are examined for ®. First we consider the approximations
® (t,nem) =9 (t,n2m) of Equations (14a), (14b),

i.e., expansions of y(n2m|tr) in terms of the even-tempered basis that
is optimally adapted to represent scaled SCFAO's according to the dis-
cussion on pages 38-46. The corresponding deviations are listed under

the heading ''Full Basis.'"  Secondly, we consider the approximations

o (t,nem) =9 (t,nm) of Equation (25),

i.e., expansions of y(nam|tr) in the reduced basis PSCETGAO's obtained in

the preceding section according to the procedure of pages 46-51. The



Table 16. Pseudo-scaled orbital :inetic and potential energiesa

Scaled 2p Orbital

T] = 12.2 V] = 2.46
Scale Full Basis Reduced Basis
Parameter %aT %av %AT %AV
0.70 .001 .001 -1 -.5
0.82 -.001 -.,0002 -.9 -.3
0.94 -.0007 -.0004 -2 -.06
1.00 0 0 0 0
1.06 .0006 .0003 -1 -.04
1.18 .001 .0004 -1 -.6
1.24 .001 .0002 -3 -1
Scaled 3p Orbital
T] = 0.412 v] = 0.448:
Scale Full Basis Reduced Basis
Parameter  %AT %AV %AT %AV
0.60 .006 .003 L .2
0.76 -.007 .002 .06 .001
0.92 -.006 -.002 .002 -.007
1.00 0] 0 0 0
1.08 .001 .002 .01 .007
1.24 -.006 .002 -.02 -.01
1.32 -.008 -.0003 .05 -.04

aO (=) . - -
#AT and %AV are the relative deviations of Equations (26a)
and (26b) multiplied by 100.
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Scaled Is Orbital

T, =92.3 v, = 13.6
Scale Full Basis Reduced Basis
Parameter  %AT %AV %aT %oV
0.85 .002 .003 5 2
0.97 .0004 .001 3 i
0.S9 -.00006 .0004L 1 .5
1.00 0] 0 0 0
1.01 .0002 -.0003 =1 -.5
1.03 .0009 -.0007 -3 -1
1.04 .001 -.0009 -4 -2

Scaled 25 Orbital

T] = 3.81 V] = 2.21
Scale Full Basis Reduced Basis
Parameter %aT %av %AT %AV
0.70 .002 .003 2 -.01
0.82 .002 .003 -.008 -.07
0.94 -.0009 .0009 -.1 ~.02
1.00 0 0 0 0
1.06 .004 .0002 -.1 -.01
1.18 .01 .002 -2 -.2
1.24 .02 .003 -3 -.h
Scaled 3s Orbital
T, = 0.286 vV, = 0.547
Scale Full Basis Reduced Basis
Parameter  %aAT %AV %AT N
0.60 -.005 -.002 9 .3
0.76 .003 .002 .2 .006
0.92 ~.006 0 .03 .001
1.00 0 0 0 0
1.08 .006 .0004 .02 .003
1.24 004 .0009 .02 -.008
1.32 -.005 .0009 .2 -.02
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corresponding deviations are listed under the heading '‘Reduced Basis.'
It is apparent that the deviations AV and AT are gratifyingly small,

confirming the usefulness of the method.

Remarks on Computation

The reported quantitative results were obtained by a set of computer
programs which are linked together to form a fully automated system.

Input consists of the following information: (1) A set of accurate
orthogonal or nonorthogonal SCFAO's, y(nfm), expanded in terms of either
exponential or Gaussian-type primitives; (2) The required expansion
lengths, i.e., the number of even-tempered Gaussian-type primitives
chosen to represent each accurate SCFAO; (3) Scaling ranges and weight
factors (for LMSQ evaluations) for each SCFAO; (4) The number of super-
positions of even-tempered Gaussian primitives (PSCETGAO's) which each
SCFAQ is to contribute to the final reduced basis.

The output is similar to that exhibited on pages 52-67, with some
additicnal cptions. The program is general enough to generate a pseudo-
scaling reduced basis of superpositions of even-tempered Gaussian primi-
tives for any atom of the periodic table.

On the IBM 360/65 the double-precision program occupies 188 K bytes
of main core, 54 K bytes of bulk core and several disk files. Execution
time for the entire generation process increases with the atomic number;
it is 10 minutes for Carbon and 25 minutes for Silicon. A restart
option is provided for, in case of termination before completion. The

bulk of the time is spent on the nonlinear minimizations with respect
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to a and B, which are performed using Powell's conjugate directions
program (23). Overlap integrals between Gaussians and exponentials are

evaluated by a novel method described in Reference (24).
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Chapter 111. OPTIMIZATIONS OF EVEN-TEMPERED GAUSSIAN
PRIMITIVE BASES BY MINIMIZING TOTAL MOLECULAR ENERGIES
FOR HYDROCARBON AND OXYGEN-CONTAINING MOLECULES

Introduction

The large majority of molecular calculations made to date have
utilized basis sets which were determined in the isolated atoms. Accurate
computations involving the optimization of basis sets in the molecular
framework have been carried out on a much more limited scale because of
the much larger expenditure of computer time required for the variation
of nonlinear, orbital exponent parameters. Past molecular optimizations
of orbital exponents can be classified into the following categories:

1) completely unconstrained optimizations of all orbital exponents;

2) constraint of inner shell orbital exponents to optimal atomic
values and variation of scaling parameters by which the optimal atomic
exponents of the valence shells are multiplied;

3) method of category (2) supplemented by the variation of orbital
exponents in additional polarization functions;

L4) constraint of inner and valence shell orbital exponents to
optimal atomic values and the variation of orbital exponents in additional
polarization functions.

Each of these four categories can be applied to (a) exponential-type or
(b) Gaussian-type basis functions so that eight possible cases can be
distinguished. The following list classifies past work accordingly:

la) application to minimal or near-minimal Slater-type basis (25-30);

Ib) no application found;
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2a) no application found;

2b) application to linear combinations of primitive Gaussians
which were determined by fitting minimal bases of Slater-type atomic
orbitals or by carrying out full atcmic SCF calculations (31,32);

3a) no application found;

3b) application to SCFAO's expanded in terms of primitive
Gaussians (33);

ka) application to Slater-type bases (34,35);

Lb) application to SCFAO's expanded in terms of primitive Gaussians
(36-38).

The feasibility of unconstrained basis optimizations in molecules is
greatly increased by using the even-tempered basis (17). Even so, an
alternative procedure to such nonlinear parameter optimizations in
molecules was introduced in Chapter Il and used in calculations on the
trialkali ions (21). This '‘pseudo-scaling' approach, however, often re-
quires an enlargement of the primitive Gaussian basis by one or two
primitives which may be undesirable for certain calculations. Therefore,
in the present chapter we investigate unconstrained optimizations of
small, even-tempered Gaussian basis sets. As a result of these optimiza-
tions, basis sets are obtained which are optimal for molecular calcula-
tions. These optimizations are applied to the molecules hydrogen,
methane, acetylene, ethylene, ethane, methyl acetylene, water, carbon
monoxide, carbon dioxide, formaldehyde, and carbon suboxide.

The optimal bases are generated by a minimization procedure which

is a modification of the method of continued parallel tangents (continued
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Partan) described by Shah et al. (39). No derivatives are computed in
this modification. In order to minimize the number of SCF energy calcu-
lations required to find the energy minimum, careful attention is given
to the selection of initial parameter values and search directions.

The minimizations are first carried out on prototype molecules which
contain the basic types of bonds, namely hydrogen, methane, acetylene,
ethylene, ethane, water, carbon monoxide, carbon dioxide, and formalde-
hyde. For these, totally uncontracted basis sets are used. Then, on
the basis of these results, new contracted, even-tempered Gaussian atomic
orbitals optimal for molecular situations (MOGETGAO's) are constructed
and the minimization procedure is modified which substantially reduces
the amount of work involved in optimizations in larger molecules.
Finally, the degree of transferability of the optimal parameters for the
prototype molecules is determined by using this scheme on methyl acetylene
and carbon suboxide which have bonding situations intermediate to those
of the prototypes.

The quality of the optimal bases is ascertained by calcu]atiﬁg
equilibrium bond distances and bond angles. In addition, energy changes
for reactions involving the molecules considered are calculated.

Selection of Even-Tempered Gaussian Atomic Orbital
Bases for Molecular Calculations

In Reference (17), we have introduced the even-tempered Gaussian

primitives (ETGPAO's)

K (22+3) /4 K

g(kem|r) =N, + (e,8,") exp(-a,8, r2) Yo (8:9), (27a)
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N,= AR A TA R S PP E (27b)

where sz denotes the k-th power of the spacing parameter Bg and Yzm are
normalized spherical harmonics. Whereas the ratio leaz usually

approximates 102, Ina, and insz have similar magnitudes and will be used

2
throughout this work.
In Chapter |, the economic deployment of Gaussian primitive bases
for expanding atomic self-consistent field orbitals (SCFAO's) was dis-
cussed in detail. This extensive analysis provides a means of selecting
even-tempered Gaussian primitive bases for molecular calculations. The
basis sizes were determinea by examining the mean square deviations in
Figures 1, 2, and 3. These figures show that good approximations to
carbon, oxygen, and hydrogen SCFAO's are obtained for bases with sizes
at least as large as (6;4,3;3) for C or 0 and (3) for H. The number
in- parentheses from left to right are the total number of distinct ls-
type primitives expanding both 1s and 2s SCFAQ's, the number of primitives
for 1s, 2s, and 2p-SCFAO's. In the present investigation, we are
primarily interested in the following small primitive bases:H(3), H(4),
C(6;3)=C(6;6,6;3), C(6;4)=C(6;6,6;4), and 0(6;4)=0(6;6,6;4). However,
the carbon and hydrogen bases C(8;5,5;6), C(10;7,7;6), and H(5) will
also be considered.
For each of the small basis sets, a set of parameter values for
lna£ and lnBz computed by the methods of Chapter | for fitting SCFAO's

will be used as initial guesses for optimizations in the molecules.

Starting values for the large carbon and hydrogen bases are obtained by
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the pseudo-scaling methods described in Chapter I1.

In order to extract the maximum amount of variational information
for the parameters of the small bases, uncontracted basis functions will
be used in optimizations on the prototype molecules. However, MOCETGAO
bases will be constructed before proceeding to methyl acetylene and car-
bon suboxide. For the larger carbon and hydrogen bases, the methods
described in Chapter 1l are used to generate pseudo-scaled, contracted,
even-tempered Gaussian atomic drbitals (PSCETGAO's) .

For each of the above basis sets, the initial values of Tna, and

L

In8,, the orbital scaling ranges selected for pseudo-scaling, and the

2"
PSCETGAC bases are given in Table 17. For the reasons mentioned above,
uncontracted functions are listed for the small hydrogen, carbon, and

oxygen bases.

Procedure of Minimization for Prototype Molecules

Method of minimization and its applicability

The effectiveness of a linear search procedure not involving deriva-
tives is judged by the number of function evaluations required to find
the minimum. In this section we describe two ways of reducing this
number: (1) a more appropriate choice of finding. starting values for
Ina, and InB, than those described in the previous section and (2) de-
termining an effective, standard set of search directions suitable for all
molecules.

The proper choice of search directions depends to a great extent on

the selection of starting values for lna, and lnsg. For this reason, the

L



Table 17. tnitial atomic orbital bases for molecular optimizations

. a
Uncontracted Rases for Hydrogen, Carbon, and Oxygen

Atom and S primitives p primitives
Basis Set In g In 50 In @, In BI
H(3) -3.443 1.588
Hk) -3.460 1.380
C(6;3) -2.871 1. 447 -3.231 1.516
C(6s4) -2.87) 1.4b7 -3.365 1.363
0(6;4) -2.227 1.439 -2.813 1.374

Contracted (PSCETGAQ) Bases for Hydrogenb

H(5)-Basis n o,y = -3.328 an By = 1.233
k* | I (1s)
Xy (Is) Xo (Is) X3 (Is
] 0.400351 1.206034 1.191786
2 0.510265 -0.691610 -2.260724
3 0.177597 ~-0.408674 1.463473
L 0,040264 -0.120256 0.015947
5 0.015093 -0.041676 0.159614

®Bases determined by the methods of Chapter I.

bBases determined by the methods of Chapter (I for the scaling range
0.90 s t < 1.10.

Index of the even-tempered primitives with the exponents aLBLk°



Table 17. (Continued)
Contracted (PSCETGAO) Bases for Carbond
€(8;5,5;6)-Basis Qg = -4, 004 AnBg = 1.297 nay = -3.949 AnB, = 1.198
k? X, (Is) X; (2s) X, (2s) X, (2p) X, (2p)
1 0.0 0.111557 0. 727066 0.116657 0.607054
2 0.0 0.757303 0.277575 0.501980 0.363655
3 0.0 0.271697 -1.079974 0.428879 -0.475308
L 0.439068 ~-0.123973 0.000516 0.157407 -0.357828
5 0. 4oly5h3 -0. 030680 0. 110583 0. 032991 -0. 093999
6 0.168799 0.0 0.0 0. 007550 ~0. 024875
7 0.036570 0.0 0.0 0.0 0.0
8 0.011982 0.0 0.0 0.0 0.0
dBases determined by the methods of Chapter II for the following scaling ranges: 0.95 < t < 1.05

for the 1s orbital and 0,70-< t < 1.30 for the 2s

and 2p orbitals.

6L



Table 17. (Continued)

€(10;7,7;6)-Basis Anag = -3.742 in By = 1.085 in a, = ~3.949 in B = 1.198
K X, (1s) X, (2s) X (25) X, (2s) X, (2p) X, (2p)

| 0.0 0.0 0. 098156 0.635477 0.116657 0.607054
2 0.0 0.0 0.604595 0.505277 0.501980 0.363655
3 0.0 0.0 0.426209 -0.921585 0.428879 ~-0.475308
L 0. 141675 0.781684 -0. 053082 -0.394729 0. 157407 -0.357828
5 0. 484871 0.271600 -0. 076567 0. 146630 0. 032991 -0. 093999
6 0.345730 -0.599673 -0.011800 0.040315 0. 007550 -0. 024875
7 0. 128941 -0.297122 -0. 002445 0. 008987 0.0 0.0

8 0.041677 -0.122621 0.0 0.0 0.0 0.0

9 0. 007744 -0.019715 0.0 0.0 0.0 0.0

10 0. 005073 -0.015396 0.0 0.0 0.0 0.0

08




81

first and second directions are the most crucial. Since gradients are
not calculated here, good first and second directions may be determined
by minimizations on a variety of small molecules. Before attempting

such minimizations, however, much of the arbitrariness in the initial
direction may be eliminated by consideration of two features of the even-
tempered basis. First, the assumption that the value of

1na2 and lnSZ obtained from atomic calculations are reasonable initial
guesses is supported by the results of Chapters | and |l and Reference
(21). Second, if this assumption is valid, the greatest gain in the

energy should be achieved when lna, and lnB2 do not increase or decrease

A
together, but vary oppositely since the Gaussian exponents shouldn't
become too small or too large. This means that the initial direction

should have a negative slope in the (inc lnBz) plane. In choosing

2,

the second direction, it is expected that lna, and lnsl will more likely

L
increase or decrease together nearer the beginning of the minimization
than later on. Thus, this direction is taken perpendicular to the first.
All subsequent directions are selected by a scheme which is a suitable
two-dimensional modification of the Continued Parallel Tangents (Continued

Partan) method of Shah et al. (39). A more detailed discussion of this

modified two-dimensional method is given in the Appendix.

Application to the hydrogen molecule

The minimization procedure is used first on H2 at the experimental
bond distance (40) to test the assumptions of the preceding paragraph as

well as to determine the relative quality of the bases H(3), H{4), and
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H(5). Using the method introduced above, the complete optimization for
H(4) is displayed graphically in Figure 8. In accordance with the above
assumptions, the direction of the initial line is chosen at ar angle of
135° from the (1na2)-axis. Using the computer program described in the
Appendix, this line is searched until a quadratic prediction satisfies
the specified parameter and function convergence criteria of 10-2 and
10_3, respectively. The distance between the first and second points is
the initial stepsize with value 10-]. The second and third lines are
searched in the same way, except that the stepsize is now 10-2. For the
reasons given in the Appendix, the stepsize, parameter criterion, and
function criterion for the remaining directions are now decremented to

3’ ]0-3

their final values of 10 , and 10-5, respectively. The minimiza-
tion ends after these criteria have been satisfied for the last two
directions.

Figure 8 emphasizes two important aspects of the previous discussion.
First, the initial direction of 135° is poor enough to increase the
number of subsequent directions so that 24 function evaluations are re-
quired to reach the minimum. Second, if a 1ine is drawn to connect the
initial point to the final point, it is seen that lnao and lnSo increase
together and not oppositely as assumed. It will be seen in the following
work, however, that this is the exception rather than the rule. Similar
graphs are obtained for the bases H(3) and H(5). For all three bases,
the final values of lnao and ]hBo and the energies are given in Tables

18 and 20, respectively.
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Application to methane and acetylene

Next, the even-tempered parameters of CHA and C2H2 were determined
for the basis C(6;3), H(4). 1In a first cycle, the method just described
was applied separately and successively to each of the three parameter
sets (1na°,1n80) of C, (]na], lnB]) of C, and (lnuo, lnso) of H. Then,
this same procedure was repeated in a second cycle tc ascertain the
interdependence between the three sets. The results of these successive
optimizations are shown in Table 22. The negligible improvement in the
second cycle shows that the three parameter sets are practically inde-
pendent of each other. The carbon SCFAQ fitting values of Inaz and lnBQ
of Table 17 and the optimal values from H2 given in Table 18 were used as
inttial parameter values for the optimizations in CHA and CZHZ’ In the
first cycle, the initial search direction of 135° was employed in the
optimization of each parameter set. In the second cycle, the initial
directions were chosen along the lines connecting the initial points and
the optimal points of the first cycle, since these lines were found to
have negative slopes.

The same type of calculation was then repeated for CHh and CZHZ’ but
with the larger basis C(634), H(4). In these calculations, the initial
parameter values selected for the carbon and hydrogen, s-orbitals were the
optimal values for the basis C(63;3), H(4) while those for the p-orbitals
were taken from Table 17. The initial search directions for all sets of
parameters were chosen to be along the lines connecting the previous
optimal parameter points for CHA with those for C2H2.

The final parameter values and energies for both bases are given in



Table 18. Optimum values of £n aé and £n B@ for various basesa

Hydrogen s Orbital Parameter Valuesb

Primitive Contracted c c c

. o C
Basis Basis H2 CHq C2H2 QZHQ

H(3) H[3] -3.230;1.597

H(4) HL 4] -3.236;1.44]

H(5) HLS] -3.232;1.318

H(5) H(2] -3.176;1.234
C(653),H(k) C[653],H[4] -3.490;1.593  -3.440;1.504
C(6;4),H(4) E6 sh], HlA] d -3.463 ;1,547 ~3.270;1.470 -3.304;1.472
€(8;5,5:6),H(5) 1,232], H[3] 4 -3.228;1.233
C(10;7,7;6),H(5) cl2,2; 2] Hf2] 9 -3.235;1.317

aOptimal values corresponding to minimum energies of Table 20.

b
Each entry contains the number pair tn a; in B.

Cparameter values obtained at the most recent experimental geometries given in Reference (40 ). See

Table 4t.

deontracted (PSCETGAO) bases of Table 17.
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Table 18.  (Continued)
Carbon s and p Orbital Parameter Values®
Primitive Contracted c c c c
Basis Basis HZ CHl& C2H2 Cz”t;
C(6353),H(4) c[6;3],H4] ~2.217;1.410  ~2.093;1.393
. -2.096;1.387  -3.272;1.505
C(654),H(4) C[654], H[ 4] -2.236;1.412  -2,023;1.384%  -2.194;1.406
d -2.918;1.280 -3.364:1.363 -3.186;1.351
€(8;5,5;6),H(5) cf1,2;2],H[3] -4, 003;1.296
d -4, 134;1.198
€(10;7,7;6),H(5) c[2,2;2},H[2] ~3.696;1.087
-L.104;1.198

®Each entry contains 4n ao; in BO in the first row and 4n ozl; 4n B] in

the second row.
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Table 19. Optimum values of #n a} and £n Bl for standard-type bases®

7 ~

b b b
Carbon Oxygen Hydrogen
Molecule s p s p s
Hzc . -3.236
c 1. 441
CHy, -2.236 -2.918 -3.463
c 1.412 1.280 1.547
C,H, -2.023 -3.364 -3.270
c 1.384 1.363 1.470
CZH]+ -2.194 -3.186 -3.30k4
c 1.406 1.351 1.472
C,He -2.215 -3.180 -3.175
. 1.413 1.345 1.442
H,0 -1.836 -2.950 ~2.995
1.433 1.402 1.L27
co® -2.912 ~2.900 -1.689 -2.653
c 1.463 1.34] 1.414 1.348
co, ~2.549 -3.014 -1.689 -2.612
1.435 1.324 1. 41k 1.345
HZCOC -2.230 -3.243 -1.784 -2.814 -3.507
1.418 1.357 1.420 1.389 1.526

®The standard basis type is C(6;4),0(6;4),H(4). The optimal parameter
values correspond to the minimum energies of Table 21.

bEach entry contains 4n O L in the first row and 4n B{ in the second row.

“Parameter values obtained at the most recent experimental geometries
given in Reference (40). See Table 41.
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Table 19. (Continued)

Carbonb 0 b b
d xygen Hydrogen
Molecule s p s P s
ﬁ3£CCHe -2.215 -3.180 -3.175
e 1.413 1.345 1.5442
Hy CCCH -2.023 -3.364
e 1.384 1.363
Hy CCCH ~-2.023 -3.364 -3.220
£ 1.384 1.363 1.470
H3§CCH ~2.215 -3.160 -3.205
£ 1.413 1.336 1.452
Hy CCCH -2.023 -3.300
£ 1.384 1.358
Hy CCCH -2.023 -3.364 -3.270
1.384 1.363 1.470
occeo? -2.630 -3.014 -1.689 -2.612
g 1.5443 1.324 1.414 1.345
occco -2.140 -2.940
1.403 1.311

dListed parameter values correspond to underlined atoms.

®Parameter values obtained for the experimental bond lengths and bond
angles from C,H, and C,H,. The contracted (MOCETGAO) basis is ¢c[3;3],
H[2] of Table’3A.

fParameter values obtained for the theoretical equilibrium geometry of
Table 41. The contracted (MOCETGAO) basis is C[33;3],H[2] of Table 3k:

9Parameter values obtained at the linear geometry with r(C-0) = 1.20%
and r(C-C) = 1.30R. See Reference (45). The contracted (MOCETGAO)
basis Is C[4;3], 0[3;3] of Table 3.



Table 20. Minimum energies (Hartrees) for various bases®
Primitive Contracted b b
Basis Basis C2H2 CZHQ
H(3) H[3]
H(4) rL4]
H(5) HES],
H(5) Hl2]
C(653),H( cl653],H[4] ~40. 12375 -76.65708
C(bsh), H( cl6s 4], HIL] ~1;0. 13762 -76.71010 -77.92006
C(8;5,5;6),H(5) cl1,2;2] ,H[3] -77.94388
C(10;7,7;6),H(5) cl2,2;2),h{2] -76. 79052

¥Mi nimum energies correspond to the optimal parameter values of Table 18.
bEnergies obtained at the most recent experimental geometries given in Reference (40 ) and Table L4l.

“Contracted (PSCETGAO) bases of Table 17.
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Table 21. Minimum energies for standard bases and comparison with
other bases

Energy of

a Energy of Energy of
Molecule Standard Basis

Comparison Basis 1€ Comparison Basis 2

H, -1.12645 -1.11669 -1.12673
CHy, -40.13762 -39. 72653 ~-40.13938
C2H2 -76.71010 -75.85208 -76.71059
Cth -77.92006 -77.07232 -77-92103
C2H6 -79.11146 ~-78.30603 ~79.11562
H,0 -75. 88368 - 74. 96293 -75.90739
co -112.48164 -112.4680
co, -187.23283 -185. 06465 -187.32796
H,CO -113.65848 -112.35375 -113.69209

aEnergies obtained at the most recent experimental geometries of Refer-
ence (40), except for cases mentioned in footnotes e,f, and g.

bStandard basis type is C(6;4),0(6s4),H(&). In C3Hy, it is contracted

to [3531,H[2]. In C,0, it is contracted to C[B;3],0[353]. See Table
34.  Minimum energieg correspond to optimal parameter values of Table
19.

“Resuits published (except for CO and C30 ) by Hehre, et al. (31), (42).
Results for CO given by Hopkinson, et “al. (43). Results for 0302
given by Sabin and Kim (4&).

dResults published by Ditchfield, et al. (32).
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Table 21. (Continued)

Energy of b Energy of c Energy of

Molecule  Standard Basis Comparison Basis 1 Comparison Basis 2
C3Hy, -115.69770 ~114.44397 -115.69964

e
C3Hy, -115.69299

.F
CBHA -115.70039
C302 -262.81142
s 0,8 ~262. 79774 -262. 19060

eEnergy value obtained for the experimental bond lengths and angles
from CoHy and C2H6‘

fEnergy value obtained at the theoretical equilibrium geometry of
Table L1.

9Energy value obtained at the linear geometry with r(C-0) = 1.204 and
r(C-C) = 1.304. See Reference (45). Energy value for comparison basis
obtained at the linear geometry with r(C-0) = 1.2431% and r(C-C) =
1.332% of Reference (L4).
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Table 22. Progress of energy minimization in CHy, and CZHZa

aé,B& Values i CHy, - CZHé

Initial (See Table 17) from

atomic SCFAQ fitting : -40. 10908 -76.56184
First Cycle

c - o and BO optimal -40.11307 ~76.65589

C - a] and B] optimal -Lo0.12211 -76.65653

H - @, and 60 optimal -40.12375 -76.65708
Second Cycle

C - and Bo optimai -40.12375 -76.65708

C -, and B, optimal -40.12375 -76.65708

H - @, and BO optimal -40.12375 -76.65708

ATl energies are given for the basis ¢€[6;3],H[4].
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Tables 18, 19, 20, and 21. For the basis C(6;4), H(4), the improvement
in the energy of C?_H2 is found to be 0.053 Hartree. In addition, a
superior C-C band length in C2H2 is obtained for the larger basis at the
theoretical equilibrium geometry. Thus, the smailer basis is abandoned
in favor of C(6;4), H(4), which in the sequel will be called the

"'standard basis."

Application to other prototype molecules

The standard bases C(6;4), 0(6;4), and H(4) were optimized for the
remaining prototype molecules CZHh’ C2H6’ H20, co, C02, and HZCO at their
experimental geometries (40) in the same manner used for CHy, and C,H,.
Before starting each calculation, the best straight lines were drawn

through the optimal parameter points (Ina lnsz) for all completed

2
molecules in order to provide refined starting directions. For all
molecules, the choices of starting parameter values were made as much as
possible on the basis of bonding similarities. For example, the similar
directional characteristics of the C-H bonds in CZHk and C2H6 were ex-
pected to yield similar carbon s- and p~-type parameters. The starting
parameter values for oxygen in subsequent optimizations were obtained
from HZO’ whose initial values were taken from Table 17. The optimal
parameter values and the corresponding energies are given in Tables 19
and 21, respectively, In Table 23, additional energy information is given
for the prototype molecules.

The accuracy of the preceding calculations may be assessed by using
the virial ratio (V/E) of Table 23 in conjunction with the molecular

virial theorem (41)



Table 23. Decomposition of the minimum total molecular energies of Table 21

Kinetic Potential Electron-Nuclear Electron-Electron Nuclear-Nuclear Potential/Total
Energy Energy Attraction Repulsion Repulsion Energy
H2a 1.11867  -2.24511 -3.61106 0.65166 0. 71429 .99310
CHua 40.03481 -80.17243 =119.53888 25.97593 13.39051 . 997hl;
csza 76.54514  -153,26524 -227.82391 49.82710 24, 74157 .99785
CoHy,”  77.96827 -155.68833 -247.55793 58. 50583 33.36377 99805
C2H6a 78.98095 =-158.09240 ~267.82097 67.46770 42.26087 .99835
°3”ub 115.67031 =231.37070 -387.50015 96.85235 59.27710 . 99974
Hzoa 75.80057 ~151.68425 -198.61387 37. 73446 9.19516 . 99890
co® 112.35701 =-224.83865 =310.05457 62.69868 22.51724 . 99889
002a 187.17270 -3 74.40553 ~558.58571 125.87645 58.303 73 . 99968
H2c0a 113.54533 -227.20381 =330.51633 71.94092 31.37160 . 99900
0302° 261.82989 -52L4.62763 ~-855.66L65 211.59956 119.43 747 . 99632

16

qComponents of the total molecular energies given only for the C[6;4],0[6;4],H[4] basis.

bComponents of the total molecular energy given for C Hh at the theoretical equilibrium geometry.

3
cComponents of the total molecular energy given for C302 at r(C-0)=1.20R and r(C-C)=1.3OR.
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A(ty ,tnyee.) = 2T+ V + ¢ R, - (EEL-. (28)

In the preceding optimizations, the variable parameters t. of Equation
(28) correspond to the even-tempered exponent parameters of the primitive
Gaussian basis set and the associated linear expansion coefficients. When
the optimal values of t. and nuclear position vectors Ki have been

determined such that the energy E is a minimum, Equation (28) reduces to

0= 2T +V ‘ (29a)
or

V/E = 2. (29b)

However, the optimizations were carried out at the experimental molecular
geometries (40). Therefore, the differences between the ratios of Table
23 and Equation (29b) is essentially due to the nonzero derivatives in
Equation (28). These differences are all < 0.0005 when the parameter
values of Table 19 are used in calculating the theoretical equilibrium
geometries.

The optimized molecular orbitals (OMO's) are given in Tables 24-32.
Each column of coefficients denotes one molecular orbital and is headed
by the orbital energy and a symmetry designation corresponding to the
irreducible representation of the molecular point group. Primitive
Gaussian designations are used to label the first to the last rows of co-
efficients in each block. Within a block the exponent parameters decrease
in value from the first to the last rows.

The positions of the atoms in all molecules are described in Table 33
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Table 24. Optimized MO for hydrogen

log
€ -0.594758
H 1s4 0.014242
183 0.056596
182 0.274520
1s1 0.278310

Y

184 0.014242
153 0.056596
152 0.274520
151 0.278310
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Table 25. Optimized MO's for methane
1a1 2a1 1t2 2t2 3t2
g€ —11.1996¢26 -0.943655 —0.544252 ~0.544252 —0.544252
C 1s6 -0.013554 -0.002432 0.0 0.0 0.0
1s5 -0.C54302 —-0.010237 0.0 0.0 0.0
1s4 -0.270253 -0.052335 0.0 0.0 .0
153 =0.611941 —0.165234 0.0 0.0 0.0
182 ~0.224686 ~-0.102320 g.0 0.0 0.0
1s1 Q0.C26103 G.615369 0.0 0.0 .0
2974 0.0 0.0 —-0.000463 -0.020221 0.012525
2px3 Q.0 0.0 -0.001822 -0. 079509 0.046250
2px2 Q.0 0.0 -0.006142 -0.267946 0.165972
20X1 G.0 0.0 -0.005504 -0.240103 0.148725
2oy4 G.C 0.0 0.018426 -0.008227 -0.012600
2072 0.0 0.0 0.072454 -0.032349 —0.049543
2py2 0.0 0.0 0.244170 -0.109016 —-0.166G61
2py1 0e0 0.0 0.218797 -0.097688 -0.149611
20z4 0.0 0.0 0.015041 0.009456 0.015822
2023 Q.G 0.0 0.059141 0.037180 0.062213
2122 QG 0.0 0.199306 0. 125299 0.209659
2pz1 0.0 0.0 0.178595 0.112278 C.187873
H1s4 0.0001Q1 0004923 -0.004019 —-0.009742 0.000484
1s2 -0.000482 0.026393 -0.019912 -0.048273 0.00239S
1s2 —0.002305 0.109237 -0.102250 -0.247886 0.012320
1s1 —-04001709 0.1C8067 -0.094268 -0.228535 0.011358
H1sé 0.C00101 0.004923 —-0.003683 0004901 -0.008586
1s3 —-0.000482 0.026393 —0.018249 0.024282 —0.042543
1s2 =0.002305 0.109237 -0.093711 0.124689 —0.218461
1s1-0.C017Q9 0.108067 —0.086396 0.114955 -0.201407
n1s& Q0.C001G1 0.004923 0.010523 -0.000558 -0.000511
1s3 -C.C00482 0.026393 0.052139 -0.002764 -0.002533
1s2 -0.C€02305 0.109237 0.267738 -0.014194 -0.013008
1s1 -0.001709 0.108067 0.246837 -0013085 -0.011693
< 1s4 Ce000101 0004923 -0.002821 0.005400 0.008613
1s2 -0.000482 0.026393 -0.013578 0.026755 0.042676
152 -0.€02305 0.109237 -0.071776 0«.137391 0.219149
1s1-04001709 0.108067 -0.066173 0126665 0202042




Table 26.

Optimized MO's for acetylene

o)

~

Q

H

€

1s6
1s%
1s4
1s3
182
's1
2ox4
2px3
2px2
2px1
2py 4
2py3
2py2
2py1
2pz4
2pz3
2pz2
2pz1
1s6
185
1s4
183
1s2
1s1
2px4
2px3
2px2
2px1
2py4
2py3
2py2
2py1
2pz4
2pz3
2022
2pz1
1sé4
183
1s2.
181
1s4
183
1s2
181

]0'=g

-11.246599

0.008918
0.034449
0.168795
0.417187
0.201873
-0.020248

0.000208
0.008494
0.008918
0.034449
0.168795
0.417187
0.201873

-0.020248
0.0

[oNeoNoNeoloNoNe
¢ o 0

QCO0O0ODOO0O0

0.000334
-0.001633
-0.000208
—0.008494
-0.000046

0.600071

0.0021S0

0.006194
—0.000046

0.000071

0.002190

0.006154

lcu

-11.242800

-0.008926
-0.034480
-0.168944
-0.417579
-0.203643

0.027281

[sNeoNeNoNoNoNoNo]
[oNeoNeoNoNoNoNoNo]

0.000045

-0.000447
0.006701
0.011824
0.0C8926
0.034480
0.168944
0.417579
0.203643

-0.027281
0.0

[oNeNoNoNoNsNo]
[eNoNeNoNoNoNeo

0.000045
-0.000447
0.006701
0.011824
0.000130
-0.000555
-0.000179
0.009335
-0.000130
0.000555
0.000179
-0.309335

209

-1.042469

-0.001988

-0.008078

~-0.040254

-0.133754

-0.115164
0.435457
0.0

oNoReoNeoNoNoNo)

[oNoNoNeNoNoNel

0.011067
0.062282
0.112345
0.180861
-0.001988
-0.008078
-0.040254
-0.133754
-0.115164
0.435457
0.0

N eNoNoNoNe

[oNeNoNoReNeo)

0.0
-0.011067
-0.062282
=0.112345
-0.180861

0.002451

0.010807

0.056497

0.202089

0.002451

0.010807

0.056497

0.202089
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20
u

-0.765781

-0.001276
-0.005259
~0.025795

-0.088027

-0.070298
0.273425
0.0

eRoNoNoNeoNal
eNeoNoNoNoNa

0.0
-0.013909
—-0.055232
-0.220862
-0.175437

0.001276

0.005259

0.025795

0.088027

0.070298
~0.273425

0.0

eNoNoNeNoNe)
[eNeoNeNoNoNe

0.0
-0.013909
-0.055232
~0.220862
-0.175437

0.008112

0.035312

0.175410

0.082417
-0.008112
-0.035312
-0.175410
-0.082417

3¢
9

-0.000127

-0.000434

-0.002676

-0.006794

-0.013592
0.057210
0.0

(oNeoNoNoNoNe!
¢ o
[oleoNoNoNoN®)

0.0
-0.025226
-0.117952
-0.308327
-0.036626
-0.000127
-0.000434
-0.002676
-0.006794
-0.013592

0.057210

0.0

[ 2 ]

eNeoReNoNoNoNe]
L[]
[eNoYeoNoNoNoNe]

0.025226
0.117952
0.308327
0.036626
0.008193
0.035902
0.178852
0.225408
0.008193
0.035902
0.178852
0.225408

I
ux

15242

26123
19245
47927
44610
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1
uy
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e 0 o o 0 s e
[eNoNeNoNeoNoNoNeNoRoNeoRoNNRU R _NoNoNoNolsNoNaRoNoNoNooNoNaoNo N SRU N NoNoNoleNoNoNeoNoNoNoNeo)
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Table 27. Optimized 0's for ethylene
1a1g 1°1u 2a1g 2b1u
€ —-11.224061 -11.222397 -1.035978 -0.,79282%
C 1s6 -0.009445 -0.009451 -0.001952 -0.001439
1s5 -0.037581 -0.037586 -0.008192 -0.006235
1s4 -0.186477 -0.186626 -0.041465 ~-0.031477
1s3 -0.430238 -0.430159 -0.133105 -0.1020G34%
1s2 =~0.166479 -0.168634 -0.085076 -0.064931
1s1 0.017173 0.023779 0.472205 0.%269512
2ox4 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0
2px1 0.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0
2py1 0.0 0.0 0.0 0.0
2pz4 0.000195 0.000007 0.006155 -0.008705
2pz3 -0.000639 0.000100 0.032727 -0.041356
2pz2 -0.000451 0.001897 0.079152 -0.126161
2pz1 -0.003147 0.007217 0.064256 -0.127217
C is6 -0.009445 0.009451 -0.001952 0.0014890
1s5 =-0.037581 0.037586 -0.008192 0.006235
1s4 =-0.186477 0. 186626 -0.041465 0.031477
1s3 -0.430238 0.430159 -0.133105 0.102084
1s2 ~-0.166479 0.168634 -0.085076 0.064981
1s1 0.017173 -0.023779 0.472205 -0.369512
2px4 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0
2ox2 0.0 0.0 G.0 0.0
2px1 C.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0
2py1 0.0 0.0 0.0 0.0
2pz4 -0.000195 0. 000007 -0.006155 -0.008705
2pz3 0.000639 0.000100 -0.032727 ~0.041356
2pz2 0.000451 0.001897 -0.079152 -0.126161
2pz1 0.003147 0.007217 -0.064256 -0.127217
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Tabie 27. (Continued)
1a1g TD.}u 2a1g Zb‘lu
(cont.) (cont.) (cont.) (cont.)
i 1s4 0.000150 -0.000065 0.003333 -0.006%583
1s23 -0.000687 0.000253 0.016849 -0.0256070
1s2 -0.000812 0.001970 0.059540 -0.126339
1s1 -0.002646 -0.002113 0.099601 -0.090193
H 1s4 0.000150 -0.000065 0.003333 -0.006358
1s2 -0.000687 0.000253 0.016849 -0.026070
1s2 -0.000812 0.0C1970 0.059540 -0.126339
sl =0.002646 -0.002113 0.099601 -0.090193
= 1sé4 0.000150 0.000065 0.003333 0.006358
1s3 -0.000687 -0.000253 0.016849 0.026070
1s2 -0.000812 -0.0C1970 0.059540 0.1263329
1s1 -0.002646 0.002113 0.099601 0.090193
1 1s4 0.000150 0.000065 0.003333 0.006358
1s3 -0.000687 -0.000253 0.016849 0.026070
1s2 -0.000812 -0.0C1970 0.059540 0.126339
1s1 -0.002646 0.002113 0.099601 0.090193
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0.006684
0.027662
0.136564
0.097287
-0.0064684
-0.027662
-0.136564
-0.097287
~0.006684
-0.027662
-0.126564
-0.097287
0.006684
0.027662
0.136564
0.097287

38,4

(cont.)

0.005394
0.022575
0.112415
0.113917
0.005394
0.022575
0.112415
0.113917
0.005394
0.022575
0.112415
0.113917
0. 005394
0.022575
0.112415
0.113917

1b3g

(cont.)

-0.008098
—-0.032458
—~0.172883
=-0.132920
0.008098
0.032458
0.172883
0.132920
-0.008098
-0.032458
-0.172883
-0.132920
0.008098
0.032458
0.172883
0.132920

1b3u

(cont.)
0.0

ejejoNoNoNoNoNoNoNeoNoNoNoNoNe)
(=jejojoleNoRoRoNoNoNoNoNoNoNe!




Table 28. Optimized MO's for ethane
qm“m Tas, mmdm wwmﬁ
€ =11.204600 -11.204253 -1.022719 -0.838759
C 1st 0.009233 -0.009239 ~0.001754 0.001538
185 0.037227 -0. 037200 ~0.007426 0.006516
1s4 0.186253 ~-0.186441 -0.038107 0.033454
1s3 0.432236 ~0.431590 -0.122043 0.107588
1s2 0.165364 -0.168203 -0.081007 0.071608
1s1 -0.017420 0.022382 0.447804 -0.400459
2px4 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0 -
2px 0.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0
2py1 0.0 0.0 0.0 0.0
2pz4 0.000081 0.C000093 0.003195 0.006584
2pz3 -0.000239 -0.000565 0.016391 0.031734
2pz2 0.001263 0.0G1896 0.045681 0.092654
2021 0.001617 0.002964 0.044190 0.080815
C 1s6 0.009233 0.009239 -0.001754 -0.001538
1s5 0.037227 0.037200 -0.007426 -0.006516
1s4 0.186253 0.186441 -0.038107 =0.033454
1s3 0.432236 0.431590 -0.122043 -0.107688
1s2 0.165364 0.168203 -0.081007 -0.071608
1s1 ~-0.017420 -0.022382 0.447804 0.400459
2px4 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0
20x2 0.0 0.0 0.0 0.0
2px1 0.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0
2py1 0.0 0.0 0.0 0.0
2pz4 -0.000081 0.000093 -0.003195 0.006534
2pz3 0.000239 -0.0005565 -0.016391 0.031734
2pz2 -0.001263 0.001896 -0.045681 0.09265¢4
2pz1 -0.001617 Q.002%564 -0.044190 0.90480815
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Table 28. Continued)
1a18 1a2u 2a1g zazu

(cont.) (cont.) (cont.) (cont.)
5 1s4 -0.000139 0.000031 0.003485 -0.005002
1s? 0.000587 -0.000046 0.016811 -0.020474
182 0.000907 -0.002371 0.058108 -0.091637
1s1 0.0019223 -0.000207 0.089479 -0.095088
H 1s4 -0.000139 0.000031 0.003485 -0. 005002
183 0.000587 -0.000046 0.016811 -0.020474
182 0.000907 -0.002371 0.058108 -0.091637
181 0.001923 -0.000207 0.089479 -0.095088
H 1s4 -0.000139 0.000031 0.003485 -0.005002
1s3 0.000587 -0.000046 0.016811 -0.020474
1s2 0. 00907 -0.002371 0.058108 -0.091637
1s1 0.001923 -0.000207 0.089479 -0.095088
H 1s4 -0.000139 -0.000031 0.003485 0.005002
1s3 0.000587 0.000046 0.016811 0.020474
182 0000907 0.002371 0.058108 0.091637
1s1 0.0901923 0.000207 0.089479 0.095083
H 1s4 -0.000139 -0.000031 0.0G3485 0.005002
1s3 0.000587 0.000046 0.016811 0.020474
182 0.00G907 0.00237) 0.058108 0.091637
181 0.001923 0.000207 0.039479 0.0950Q°8
184 -0.000139 -0.000031 0.003485 0.005002
183 0.000587 0.000046 0.01l6811 0.020474
182 0. 000907 0.002371 0.058108 0.0391637
1s1 0.001923 0.0002C7 0.089479 0.095033
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1eu
(cont.;

0.0054322
0.020331
0.106147
0.0922392
0.002069
0.007805
C.039906
0.034932
-0.007501
~-0.028136
-C.146054
-0.1273824
0.007501
D.C28136
J.146054
C.127824%
-0.005432
-C.020331
-0.106147
=-2.0128722
-C.0N2069
-3.0017830¢8
-0.629926
~-0.054932

le
u
(cont.)

0.005588
0.020882
C. 109519
0.095714
-0.007440
-0.027946
~0.144687
-0.126839
0.001853
0.007064
0.035168
0.031125
-0.001853
-0.007064
-0.035168
-0.031125
-0.005583
-0.020882
-0.109519
-0.095714
0.007440
0.027946
0.144687
0.126839

3a1g
(cont.)

0.003431
0.012541
0.069324
0.077343
0.003431
0.012541
0.069324
0.077343
0.003431
0.012541
0. 069324
0.077343
0.003431
0.012541
0.069324
0.077343
0.003431
0.012541
0.069324
0.077343
0.003431
0.012541
0.069324
0.077343

e
(cont.)

0.004378
0.015996
0.088033
0.098122
0.004646
0.017011
0.093435
0.104181
-0.009023
-0.033007
-0.181468
-0.202303
-0.009023
-0.033007
-0.181468
~0.202303
0.004378
0.015996
0.088033
0.098122
0.004646
0.017011
0.093435
0.104181

1e
(cont.)

-0.007892
-0.028883
-0.158716
-0.176944
.0.007735
0.028322
0.155562
0.173465
0.000156
0.000562
0.003154
0.003479
0.000156
0.000562
0.003154
0.003479
~0.007892
-0.028883
-0.158716
-0.176944
0.007735
0.028322
0.155562
0.173465




Tabie 29Y. Optimized i0's for water
la, 2a1 10, 341 1b1
€ -20.533870 -1.356370 -0.715966 -0.564594 ~0,500608
0 1s6 -0.014656 -0.002955 0.0 -0.001092 0.0
185 -0.060204 -0.012955 0.0 -0.004801 0.0
184 -0.306220 -0.067744 0.0 -0.025162 0.0
183 -0.625625 -0.210001 0.0 ~0.079604 0.0
1s2 =-0.160245 -0.017895 0.0 -0.004273 0.0
181 0.016767 0.773400 0.0 0.338250 0.0
2px4 0.001200 -0.008019 0.0 0.042321 0.0
2px3 0.001372 -0.031343 0.0 0.204635 0.0
2px2 -0.000074 -0.119263 0.0 0.456308 0.0
2px1 =0.002415 0.048427 0.0 0.421102 0.0
2py4 0.0 0.0 0.0 0.0 0.048539
2py3 0.0 0.0 0.0 0.0 0.234639
2py2 0.0 0.0 0.0 0.0 0.533374
2pyl 0.0 0.0 0.0 0.0 0.443381
2pz4 0.0 0.0 0.038071 0.0 0.0
2pz3 0.0 0.0 0.179450 0.0 0.0
2pz2 0.0 0.0 0.429239 0.0 0.0
2pz1 0.0 0.0 0.1967717 0.0 0.0
H 1s4 0.000162 0.005583 -0.009566 -0.005130 0.0
183 -0.000532 0.025070 -0.030582 -0.018964 0.0
182 -0.000958 0.097266 ~0.202902 -0.103140 0.0
1s1 -0.002420 0.142851 -0.16249]1 0.009994 0.0
H 1s4 0.000162 0.005583 0.009566 -0.005130 0.0
1s3 -0.000532 0.025070 0.030582 -0.018964 0.0
1s2 =-0.000958 0.097266 0.202902 -0.103140 0.0
1s1  -0.002420 0.142851 0.162491 0.00999¢ 0.0

801



Tablie 30. Optimized kO's for carbon monoxide
lo 20 3¢
€ -20.645691 -11.350878 ~1.554903
C 1s6 0.000003 0.021508 0.002340
1s5 -0.000020 0.090829 0.010666
184 0.000100 0.420492 0.051253
1s3 -0.000499 0.582854 0.126338
1s2 0.000321 0.036853 -0.122006
181 0.007108 0.001882 -0.329654
2px4 0.0 0.0 0.0
2px3 0.0 0.0 0.0
2px2 0.0 0.0 0.0
2px1 0.0 0.0 0.0
2py4 0.0 0.0 0.0
2py3 0.0 0.0 0.0
2py2 0.0 0.0 0.0
2py1 0.0 0.0 0.0
2pz4 —-0.000041 0.0£0879 -0.008351
2pz3 -0.000045 0.043252 -0.046066
2pz2 0.002407 -0.000219 -0.152273
2pz1 0.004536 -0.000074 -0.125949
C 1s6 0.014041 -0.000010 0.002661
185 0.056113 -0.000023 0.011380
1s4 0.282803 -0.000235 0.058313
1s3 0.618480 -0.000228 0.188364%
is2 0.199485 -0.000976 0.055527
1s1 -0.023535 0.001750 -0.670458
2px4 0.0 0.0 0.0
2px3 0.0 0.0 0.0
2px2 0.0 0.0 0.0
2px1 0.0 0.0 0.0
2py4 G.0 0.0 0.0
2py3 0.0 0.0 0.0
2py2 0.0 0.0 0.0
2py 1 0.0 0.0 0.0
2vz4 -0.001025 -0.000271 0.013327
2pz3 -0.001878 0.000684% 0.050850
2pz2 0.000481 -0.002581 0.135384
2pz1 0.004516 0.000165 -0.055814
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T

Tavle 31. Optimized kO's for carbon dioxide

1o o 20 30 20
u g g g u

£ —20.632066 -20.631673 =-11.492428 ~1.557367 ~1.5141C4
C 185 0.0 -0.000001 0.016860 0.002458 0.0

isS5 0.0 0.000002 0.068882 0.010896 0.0

1s4 0.0 -0.000032 0.336194 0.053389 0.0

1s) 0.0 0.000066 0.617544 0.156711 0.0

1s2 0.0 -0.C01703 0.124678 =0.023675 0.0

1s1 0.0 0.010250 -0.011339 -0.571575% 0.0
2px4 0.0 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0 0.0
2pxt 0.0 0.0 2.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0 0.C
2py3 0.0 0.0 0.0 0.0 0.0
2252 0.0 0.0 0.0 0.0 0.0
2071 0.0 0.0 0.0 0.0 0.0

>pz4 0.000056 0.0 0.0 0.0 0.017075
2pz?-0.000717 0.0 0.0 0.0 0.077698
2pz2 0.005162 0.0 0.0 0.0 0.266691
2pz1 0.007554 0.0 0.0 0.0 0.202515
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Tztie 1. (Continued)
3 2
lcu lcg ch ch o,
(cont.) {cont.) (cont.) (cont.) (cont.)
0 1s6 -0.009935 0.009932 -0.000007 0.001798 0.001925
185 -0.0396380 0.039705 -0.000024 0.007606 0.008332
184 -0.200085 0.199973 -0.000144 3.039485 0.042057
183 =0.437064 0.437617 -0.000325 0.125273 0.138600
182 —0.141944 0.140123 -0.000278 0.043680 0.031523
1s1 0.018990 -0.014767 0.002252 -0.466675 -0.457364
2px4 0.0 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0 0.0
2rpx2 0.0 0.0 0.0 0.0 0.0
2px1 0.0 0.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0 0.0
2371 0.0 0.0 0.0 0.0 0.9
2pz4 -0.000786 0.000917 -0.000032 -0.008444 -0.007716
2p23 -0.001946 0.001309 0.000653 -0.028598 -0.034417
2pz2 0.001673 0.000266 -0.000093 -0.12410% -0.101051
2pz1 0.002230 -0.003785 0.000896 0.056367 0.025207
0 1s6 0.00%9935 0.009932 -0.000007 0.001798 -0.001925
185 0.039680 0.0393705 -0.000024 0.007606 -0.008332
1s4 0.200085 0.199973 -0.000144 0.039485 -0.042057
1s3 0.427064 0.437617 -0.000325 0.125273 -0.138600
182 D.141944 0.140123 -0.000278 0.043680 -0.0315232
181 -0.018990 -0.014767 0.002252 —0.4666175 0.457364
2px4 0.0 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0 0.0
2px1 C.0 0.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0 0.0
2p¥2 0.0 0.0 0.0 0.0 0.0
2py1 C.0 0.0 0.0 0.0 0.0
2pz4 -0.000786 -0.000917 0.000032 0.008444 -0.007716
2123 ~0.0019456 -0.001309 -0.000653 0.028598 -0.03441T7
2pz2 .06 13 ~03.000266 0.000093 0.124106 -0.101051
221 2.0027210 0.003785 -0.000896 =-0.056367 0.025°07
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Taople 31. (Continued)
_.:m,\ ?ﬂm«\
€ -0.526908 (cont.)
C 1s6 0.0 0 1s6 0.0
1s5 0.0 1s5 0.0
184 0.0 1s4 0.0
1s3 0.0 183 0.0
1s2 0.0 182 0.0
1s1 0.0 1s1 0.0
2px4 0.0 2px4 0.0
2pX3 0.0 2pX3 0.0
2px2 0.0 2px2 0.0
2px1 0.0 2px1 0.0
2py4 0.0 2py4 0.028866
2py3 0.0 2py3 0.137135
2py2 0.0 2py2 0.346942
2py1 0.0 2py1 0.370902
20z4 0.0 2pz4 0.0
2pz2 0.0 2pz3 0.0
2vz2 0.0 2pz2 0.0
2pz1 0.0 2pz1 0.0
0 1s6 0.0
185 0.0
1s4 0.0
1s3 0.0
1s2 0.0
181 0.0
2px4 0.0
2px3 0.0
. 2px2 0.0
2px1 0.
2py3 =0.137135
2py2 =0.346942
2py1 —-0.370902
2pz4 0.0
2pz3 0.0
2p22 0.0
N%Ng 0.0




Table 32. Optimized MO's for formaldehyde
la, 2a1 3a1 4a,

€ —20+562480 -11.346069 -1.433331 -0.872135
1s6 -0.000001 0.013137 0.001401 -0.001991
1s5 0. 000008 0.053052 0.005986 -0.008541
184 - 0. 000046 0.265847 0.030430 -0.043412
183 0.000186 0.612272 0.097824 -0.142037
1s2 -0.001263 0.231327 0.055779 -0.084969
i1s1 0.004060 -0.028891 -0.365023 0.526198
2px4 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0
2px1 0.0 0.0 0.0 0.0
2py4 0.0 0.0 0.0 0.0
2py3 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0:
2py1 0.0 0.0 0.0 0.0
2pz4 -0.000100 0.000087 -0.009980 -0.010885
2p23 c.000189 0.001676 -0.056472 —0.049345
2022 0.002041 -0.002982 -0.135988 -0.155968
2pz1 0.0035633 0.002704 -0.128854 -0.141361
1s0 0.015094 -0.000006 0.002824 0.001294
1s5 0.060557 -0.000017 0.012129 0. 005550
184 0.303438 -0.000150 0.062200 0.028612
1s3 - 0.621118 -0.000137 0.193013 0.089338
1s2 0.167461 -0.001138 0.022743 0.011317
181 -0.018497 0.004596 -0.685640 —-0.354096
2px4 0.0 0.0 0.0 0.0
2px3 0.0 0.0 0.0 0.0
2px2 0.0 0.0 0.0 0.0
2px1 0.0 0.0 0.0 0.0
2oy 0.0 0.0 0.0 0.0
2pyX 0.0 0.0 0.0 0.0
2py2 0.0 0.0 0.0 0.0
2oy1 0.0 0.0 0.0 0.0
2pz4 -0.001052 0.000046 0.010963 -0.008710
2pz3 -0.001742 -0.000525 0.047122 —0.046632
2pz2 0.000637 -0.001924 0.151314 -0. 089691
2pz1 0.002900 -0.003728 -0.042754 -0.117952
1s4 -0.000033 -0.000157 -0.000809 0.007629
183 C.000152 0.000744 —0.007464 0.0355390
1s2 -0.000340 0.001802 -0.011030 0.165193
1s1 0.001499 0.003212 -0.074150 0.101027

¥ 1s4 -0.000033 -0.000157 -0.0008089 0.007629
1s3 N0.000152 0.000744 -0.007464 0.035530
1s2 -0.000340 0.00LRO2 -0.011030 0.165193
1s1 N0.201499 0.003212 -0.074150 0.101027
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Table 33, Cartesian coordinates of the atomic nuclei

Atom

Molecule? Symbolb
H2 H 0 0 0
CH4 C 0 0 0
H 1.687616783119517 O -1.193325271388037
H -1.687616783119517 O -1.193325271388037
H 0 1.687616783119517 1.193325271388037
H 0 -1.687616783119517 1.193325271388037
02H2 C Q - Q Q
C 0 0 2.279
H 0 ) -2.005
H 0 0 4.284
C2H4 C 0 ' 0]
C 0 0 2.517
H 0 1.733 3.608
H 0 -1.733 3.608
H 0 -1.733 -1.09
H 0 1.733 -1.0N

-

8coordinates correspond to the experimental geometries of Reference (40) and
Table 41 for all molecules except C3H4 and C302. For C3Hy the theoretical
equilibrium _geometry of Tablg 41 is used. For C40s the linear geometry with
r%c-0)=1.203 and r(C-C)=1.30& of Reference (45) ¥s used.

bAtom symbols for each molecule occur in the same order as those given in

Tables 24-32.

8Ll



Tablie 13, (Zontinued)

Atom

Kolecule® Symbolo
C2H6 c 9 9 ~1.44915
C J 8] 1.44935
H 1.9506 J -2.12335%
H =2.9753 1.639263152621925 -2.1231358
H =-J3.9753 -1.639269152521325 -2.12335
H 3.9753 1.689269152621325 2.12335
H -1.9506 o) 2.12335
H 0.9753 -1.689269152621925 2.12325
HZO 0 1.10713 0 )
H 0 0 -1.4304
H ) ) 1.4304
Co C 0 0 J
0 9 3 2.1317
CO2 C 0 0 0
0 0 0 -2.1954
0 J 0 2.1954
H200 C 0 0 Q
0 0 Q 2.2732
H -1.7692 9] -1.2943
q 1.7692 0 -1.0943
C3H4 C 0 Jd -2.7626
C 0 0 Q
C 9 0] 2.252
H 1.891490 J -3.4362%
H -0.945745 1.638373391004227 -3.43625
H -0.945745 ~1.633278391004227 -1.49625
H 0 J 4.215
0302 C 9 J )
C J J -2.45065
C 0 ) 2.4565
0 0 J -4.7241
0 J 3 4.7241

6Ll
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with reference to a right-handed external coordinate system. Wherever
possible, the carbon and oxygen atoms lie on the z-axis. The labelling
of the atoms of Tables 24-32 and 33 is the same. The integrals are
calculated with respect to coordinate systems centered at the nuclei and
displaced parallel to the above external coordinate system with no
rotations. Thus, the positive lobes of all p-type atomic orbitals point

in the same direction.

Comparison of standard bases with other calculations

The energies for the optimized standard bases are compared with
other calculations in Table 21. The third column of this table contains
the energles published by Hehre et al. (31,42), for all molecules
except CO and C302, using a basis with six s-primitives and 3 p-primitives
of the type C(6;3,3;3), 0(6;3,3;3), H(3) contracted to a minimal basis.
The primitives were obtained by fitting a minimal basis of atomic Slater-
type orbitals followed by scaling the valence orbitals in small molecules.
From these scaling parameters a standard set was derived for use in
larger molecules. For CO and C302, larger unoptimized primitive bases of
€(7;7,7;3) and 0(7;7,7;3) were used by Hopkinson et al. (43) and Sabin
and Kim (44). Uncontracted and contracted [5,2;3] bases were used
for CO and C302, respectively. The fourth column of Table 21 contains
the energies published by Ditchfield et al. (32), and Hehre et al. (42)
using a basis of 8 s-primitives and 4 p-primitives of the type C(8;4,k;4),
0(8;4,4;4), H(4) contracted to C[1,2;2], 0[1,2;2], H[2]. The primitives

were obtained by atomic SCF calculations followed by scallng of the
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valence orbital contracted functions in all molecular calculations. It
is seen that the energies for our standard bases are all substantially
better than the minimal basis energies given in the third column of Table
21. The poorer performance of the bases of Hehre et al. (31) is not due
to the number of primitives, but to the contraction to a minimal basis.
However, the energies of the standard bases are all higher than those for
the bases of the fourth column of Table 21 by 0.002 to 0.1 Hartree.

These energies are sufficiently close so that we may question the need

for a basis with eight primitives.

Relations governing optimal exponents for standard bases

The final, optimal parameter values for the standard bases of the
prototype molecules are plotted in Figure 9. Also, shown are optimal
values for methyl acetylene and carbon suboxide. We shall return to
calculations on these molecules in the next two sections, since the
methods for optimizing the even-tempered parameters are somewhat modified.
Figure 9 shows that the optimal parameter values lie close to the following

straight lines:

Hs: ]nBo = -0.23 lno_zo + 0.71,
Cs: lnBo = -0.13 lnao + 1.12,
Cp: lnB] = -0.12 lna]
Os: lnBo = -0.13 lnao + 1.19,

+ 0.96,

Op: InS] -0.17 lna] + 0.90.

The variation of @, from molecule to molecule is greater than Bz showing

the importance of scaling in molecular calculations. Moreover, a
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Flgure 9. Optimal even-tempered parameter values for the standard bases
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comparison of the fitting and optimal parameter values shows that, in
general, the atomic orbitals spatially contract relative to the atoms.
These results are of great usefulness for easy optimizations not
only in larger molecules containing the same atoms and similar bonds
found in the prototypes, but also in molecules containing different
atoms. Since for the majority of molecules optimal (lnal, lnBz)- points
of a particular atom and orbitals lie very nearly on the straight line
indicated in Figure 9, the most effective energy lowering is achieved by
searching first along this line, using optimized parameters from related
molecules as starting values. For some molecules the indicated atomic
fitting values are closer to the optimal values. Nonetheless, they would
be poorer starting values because of the uncertainty in the initial
direction which could substantially increase the number of search direc-
tions. Once the lines of Figure 9 have been searched, additional,

smaller refinements in the energy are made by searching other lines along

which lnaz and lnB2 also vary oppositely.

Calculation of larger bases

In order to assess the quality of the standard bases, C(634), 0(6;4),
H(4), more accurate calculations were carried out on the small molecules
C,H, and C,H,, using bases €(8;5,5;6), H(5) contracted to C[3;1,2;2],

H[3] for C,H, and €(10;7,7;6), H(5) contracted to C[4;2,2;2], H[2] for
CZHZ' For these bases, the values of the a and B parameters determined
from the pseudo-scaling procedure of Chapter |l and quoted in Table 17

as ''initial parameters'' were very close to the optimal molecular values

quoted in Table 18. This fact indicates the effectiveness of the
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pseudo-scal ing procedure. In this context it is also noteworthy that the

optimal a, values lie inside the scaling ranges indicated in Table 17,

L
even though Sz changed slightly. For example, the ratio a](opt)/B](fit-
ting) for the carbon 2p-orbital in C,Hy, Is 0.88. The minimum energies
given in Table 20 were described earlier. The differences between these
energies and the initial energies computed with the pseudo-scaled a,

and 82 values are 0.003 Hartree for Csz and 0.0003 Hartree for CZHZ.

The minimization procedure started with the atomic pseudo-scaling ay
and 82 values. The first search direction was chosen parallel to the
lines given in Figure 9. The second search directicn was taken at 135°
from the (Inaz)-axis instead of perpendicular to the initial direction as
before. Looser final parameter and energy criteria of 5 x 10—3 and 10-4
were used. However, the same initial stepsizes and criteria, which were
used previously, were retained.

Construction of MOCETGAO's from Fully Optimized Molecular
Orbitals of Prototype Molecules

In molecules larger than the prototypes and in routine calculations,
it would be too time consuming to use all 6 s=-primitives and 4 p-primitives
as independent basis functions for the LCAO-MO-SCF procedure. Rather,
experience has shown that results of almost equal quality can be obtained
with a fewer number of contracted AO's which are fixed superposititions
of primitives. Various schemes have been used in the past for the
construction of such contracted AO0's. One of these approaches was

described in detail In Chapter Il for constructing bases of PSCETGAO's.

In contrast, the principal objective of the present section is the
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determination of optimal contracted AO's in the molecular context. It is

for this reason that calculations with noncontracted standard bases were
made first as discussed in the preceding section. We shall now describe
the derivation of optimal contracted standard bases from these un-
contracted calculations. These contracted bases will be called MOCETGAO
(molecular optimized contracted even-tempered Gaussian atomic orbital)’
bases.

In the following, the MOCETGAQ's are obtained for each of the
prototype molecules of the previous section with the aim of constructing
optimal standard bases of maximum flexibility and transferability.

The molecular density matrix, corresponding to the minimum of the
total molecular energy, contains the information concerning the MO's ex-
panded in terms of the optimized primitive Gaussian basis. Using only
the expansions of the occupied MO's in terms of the primitive Gaussians_

as given in Tables 24-32,

u =

£ £ g(Aagm|r) C(Aagm]v), (30)
v .

Iz
AZma

the total density matrix has the form

o(rl};') =2z uv(&) uv(&')
‘ v

3~
™
™

z g(Aatm|r)g(Bb2'm'|r')p(Aasm|BbLim') (31)
b M M

> ™
w ™
o™
2™
B—
o

where

2 £ C(Razm|v) C(Bb&'m']|v). (32)

P (Aatm|Bb2'm')
: v
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For the present purpose, we take all terms from Equation (31) which
contain primitives from one atom A only. They form a subdensity matrix

of the form

oplrfr) = = =z glRatm|r)g(Aba'm'|r') p(Aatm|Abz'm') .  (32')
s % % m,m' a,b o w

Since we wish to obtain contracted orbitals that are independent of m, we

next form the spherical ly-projected, local density matrix,

°A, spherical - i { afb p(Aag|Abe) [ i g(Aagm)g (Abam) ]} (33)

where p(Aag|Abr) is the average value of the elements p(Aagm|Abm),

defined by
p(Rat|AbL) = mir T p(Aasm|Abim), (34)
m
p(Aagm|Abam) = 23C(Aagm|v) C(Abm|v). (34")

v

The same matrices are obtained by fragmenting each occupied MO into
its atomic components and then forming local spherical density matrices
from these atomic fragments. For each matrix, the elements are computed
from Equations (34) and (34') by using all MO coefficients associated
with the same set of primitive Gaussians.

In order to obtain MOCETGAO's, we seek those superpositions of primi-
tives which allow the construction of the matrix of Equation (34) in the

most efficient manner. To this end, the matrix is diagonalized separately
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for each value of 2. Each matrix may then be expressed in terms of the
eigenvalues lk(l) and the elements of the orthogonal, diagonalizing matrix
T,

p(Aag|Abg) = i N ) T ()T, (0). (35)

Substitution in Equation (33) gives

°h, spherical = i i A (2) [2q>k<Azm)¢ i (Aam) ] (36)
with the contracted AQ's
© | (A2m) = I g(AagM) T_, (2) . (36')

a

iIf the eigenvalues Ak(z) are ordered according to decreasing magnitude,
the contributions to Equation (36) decrease in importance as k increases.
The desired MOCETGAO's are those AO's defined by Equation (36') which

are required for adequate convergence of the sum over k. These MOCETGAO's

and the eigenvalues A, are given in Table 34. The carbon s-type

k
MOCETGAO's, ®s5 (s) and q;6(s), and the p-type MOCETGAO, o, (p), are

10 ond 1077,

omitted because their eigenvalues are always less than 107
respectively.

In order to test whether MOCETGAO's represent adequate reduced bases
for molecular calculations, complete LCAO-MO-SCF calculations were per-
formed with these contracted basis functions. Table 35 lists the

differences between the molecular energies obtained by this approach and

the exact values of Table 21. For the basis consisting of the three most
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Table 34. MOCETGAQ bases and eigenvalues for the prototype molecules
H2 MOCETGAO's
0.704135 -0.702242 ~-0.025388
0.694545 0.711938 —0.025043
O.l43191 0.0 -0.005163
0.036033 0.0 0999351
lk l.560-C1 1439D-17 1.08D-1¢9
CH4 NMOCETGAQ'S
Carbon s-orbitals
-0.502148 0.861423 0.063990 —0.008019
0.305231 0.1C1l807 0936999 -0.026100
0.743582 0441406 —0.343386 -0.065947
0.212430 0.224805 0.004203 -0.030077
0.062562 0.045572 0.002457 0.996°296
0.015520 0.011554 ~-0.000001 0.000001
A 6£.21D0-01 3.00D-01 1.45D~11 3.77D~-14
Carbon p-orbitals
0.650622 0.758943 0.025480
C.726128 -0.612815 -0.305299
C.215469 —0.216857 0.951916
0.05475S8 -0.037908 0.0
A 1.88D-Cl 2.93D-10 2.100-12

Hydrogen s-orbitals

0.671928 0.508511 -0.412987
D.726061 -0.555297 0.273345
0.143251 0.618413 0.664157
0.0G287¢C5 0.067844 -0.560018
A 4.330-01 4.58D-05 S.12D0-08
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Table 34. (Continued)
02H2 MOCETGAO's
Carbon s-orbitals
-0.382045 0.917180 0.087403 ~0.071996
0.411832 0.0¢€3699 0.834042 -0.361365
0.7€8536 0.3351256 ~0.494238 ~0.203462
0.299684 0.173167 €.227682 0.892062
0.061077 0.035586 0.021506 0.155822
0.015724 0.009452 8.012709 0.052735
Kk 5.880-01 2.18D0-01 2.24D0-05 2.000-07
Carbon p-orbitals
0.519716 0.854310 0.006231
0.804763 -0.486981 -0.337688
C.230217 -0.176818 0.935348
0.061068 -0. 041706 0.105132
Ak 2.020-01 9. TED-03 3.41D-04
Hydrogen s-orbitals
C.779583 -0.626291 0.002818
0.61354G 0.762757 -0.197213
0.1225¢€2 0157017 0.979372
0.028021%1 0.026146 -0.043918
3 1.53D0-01 l.420-02 4.10D0-07
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Table 34. (Continued)
. - '
02h4 MOCETGAO's
Carbon s-orbitals
-0.48356G2 0.871806 0.062866 -0.045603%
0.323379 0.102915 Ce921469 -0.1870156
0.749514 0.425242 -0.379379 -0.336193
C.209332 0.215626 C.054728 0.883566
C.C62175 0.043729 ~0.003294 0.255921
0.015525 0.C11202 C.002800 0.060753
Ak 6.130-01 2.85D-01 2.770-05 65.390D-09
Carbon p-orbitals

C.60%164 0.7S3038 -0.003143

0.754633 -0.580834 -0.302859

0.238348 -0.179245 0.949665

0.051367 -0.039937 0.080015

kk 2.01D-01 5.14D0-03 2.14D-05

Hydrogen s-orbitals

0.637212 0.7€7344 -0.071615

0.754472 ~-0.639840 —-C.144042

C.152613 -0.034963 0.972965

C.036755 -0.023773 0.125506

A 1.400-01 2.0GD-03 1.110-05
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Table 34. (Continued)
CZH’ MOCETGAO's
o]
Carbon s-orbitals
~0.485048 0.87C599 0.064324 -0.051325
0.323677 C.0G67706 0.900905 -0.270151
0.748927 0.429541 -0.405837 -0.299686
C.303338 0.214520 0.136348 0.881827
0.061386 0.043213 0.007564% 0.231220
0.015145 0.010903 0.007250 0.059037
Xk 6.170-01 2.900-01 4.81D-06 4.45D-08
Carbon p-orbitals

C.566665 0.819936 -0.080675

0.78353%59 -0.566752 -0.245016

0.243153 -0.07301 4 0.963484

0.05367% -0e022913 C.071810

lk 1.630-C1l 3.32D-04 3.40D0-06

Hdydrogen s-orbitals

0.7132870 —0.6G9961 -0.020972

0.£87125 D.7C5755 -0.169406

o.1205%12 « 103409 0.980439

0.0324354 0.035648 0.097989

A 3.2880-01 1.56D-03 4.,770-05
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0.814985

~0.066377
~0.524992
-0.220990
-0.043073
-0.C010282

8.62D0-01

0.571495
0. 749648
0.326783
0.068072

4.C05D-01

0.643236
0.753078
0.133124
0.037335

1.02D-01

H,0 MOCETGAO's

Oxygen s-oOrbitals

0.575570
0.206229
0.6$5050
0.3£73261
0.0725089

0.0173033

4.2105-01
Oxygen

0.815064

-0.5¢5587
-0.120708
~0.034794

9.260-03

-0.023138¢%
-0.35589¢6
-0.343291

0.845466
0.175789
0.049573

1.92D0-06

p-orbitals

-0.095128
-0.343151

0.922394
0.149624

2.44D-05

Hydrogen s-—-orbitals

C.784929

-0.6393860
-0.0£8809
-0.026974

7.74D-03

—0.033564

0.149588
0.984498
0.085213

7.38D-05

-0.0532114

0.905137

-0.349110

0.236702

-0.000072
-0.0000138

2.680-17
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C.8611%20
0.14076S
-0.421832
~0.240747
—0.050652
-0.011774

9.37D-C1

0.634139
0.7422CS
0.212825
0.8412C7

1.180-01

C.780666
-0.172231
-0.5555638
-0.223074
-C.C044035
-C.010813

8.23D0-Cl

0.£35624
0.716126
0.281848
0.0560885

3.77D-C1

CO MOC

ZTGAO's

Carbon s-orvbitals

0.479491
0.076328
C.693715
0.51G178
0.1:12659
0.026771

4.87D-01

~0.167578
0.961966
-0.124530
.171810
C.035743
0.010077

3.760-02

Carovon p-orbitals

0.773110
-0.813314
-0.158630
-0.0321351

1.43D-02

Oxygen

0.623805
0.220635
0.6€8721
0.332171
0.0646105
0.016716

3.95D0-01

-0.0128¢7
—0.267035
£.962997
C.034102

4.47D-05

s-orbitals

-0.014273
0.91068%
—0.374789
C.171260
0.022506
0.009891

4.51D-05

Oxygen p-orbitals

0.765384
-0.633067
-0.1C8315
-0.038271

1.G2D0-C2

-0.100493
-0.293461
€.934213
0.176150

9.21D-06

-0.0170357

-0.22125%

-0.570255
C.7677G9
0.133918
0.047145

o}
(v

5.52D-06

-0.034979
-0.303182
-0.321779
0.879344
0.164680
0.050964

1.690~-06
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-0.3G63732
0.0G6747¢C
0.81160C2
O0.411359
0.G084513
0.020455

6.C7D-01

0.429730
0.868572
0.240625
0.C549G8

1.42D-01

0.795263
~-0.16861
-0.534130
-0.213485
—0.042092
-0.010336

8-47D-01

Ca667165
0.6G0511
J0.273314
0.057840

3.73D-C1

CO, MOCZTGAO's

Carbon s—-orbitals

0.909635
0.170327
0.3£2678
0.222608
0.045501
0.011536

2.55D0-01

-C.120434
0.941628
~0.262237
0.163893
0.024728
0.009149

1.010-02

Carbon p-orbitals

0.902395
-0.416555
-0.103526
~-0.023356

-C.0103283
—-0.263600
C.9642338
0.025532

5.610-06

Oxygen s-—orbitals

0.569874
0223414
0.686248
0.238339
0.0€&7366
0.017014

4.(02D-01

-0.010197
C.915683
~0.368961
0.157750
0.018062
0.008766

2.16D0-04

Oxygen p—-orbitals

0. 740243
—0.656174
-0.140273
-0.042415

1.08D-02

-3.082993
-0.302202
C.943721
0.105715

5.09D0-G5

~-0.022758

-0.273083

-0.423290
C.85831
0.086747
0.038852

3.120-08

-0.035007
-0.288139
-0.328038
0.879922
0.17643D
0.052449
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Table 34. (Continued)

H,CO MOCETGAO's

2

Carvbon s-orbitals

0.547580 0.834039 0.048222 -0.046989
-0.301281 0.130884 0.909557 =-0.254489
-0.720273 0.478133 —0.394332 -0.311152
-0.2%543849 0.237127 C.121578 0.901303
-0.058726 0.047531 0.007874 0146720
-0.014420 0.011969 0.006293 0.048314

kk 6+.43D-C1 3.14D-01 2.46D-04 1.20D-06
Carbon p-orbitals

0.409476 0.912259 -C.01050¢9

0.868525 ~0.363340 -0.296935

0.272936 -0.111580 0.954403

0.059157 —0.024824% 0.028872

lk 1.€1D0-01 2+34D-02 6.52D-05
Oxygen s-orbitals

0.811111 0.582429 —0.050660 -0.017550
-0.110336 0.210457 0.828518 —0.506964%
-0.527895 0.651130 -0.412100 -0.271702
-0.221330 0.3€¢4286% 0.3692495 0.799645
-0.0432920 0.073087 0.065%01 0.164367
-0.010728 0.0183¢8 0.021842 0.049076

Ak 8.59D0-C1l 4414D-01 1.610-05 1.84D-07
Oxygen p-orbitails

0.599547 0.7G6544 ~0.077746

C.732390 -0.5873846 -0.32G728

0.2025732 -0.:136132 C.930689

0.061427 -0.C37708 0.138032

A 2.3.1D0-01 7.67D-03 4.57D-C5
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Table 34. (Continued)

H,CO OCETGAO's

2

Hydrogen s-orbitals

0.678926 C.734075 0.013887
0.721381 -Je6E3422 -0.196593
0.133147 -U.141519 0.977748
0.030693 -0.031277 0.071885
A 1.930-C1 1.16D0-0G2 2.35D=-04
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Table 35. Comparison of energies for standard-type bases with energies
for MOCETGAO bases

Molecule® c[3;3],n[2] cl3521,0[3;2],H[2] cl4s2],0[3;2]
H2 0. 00000

CHA 0.00000 0. 00000
CZH2 0.00004 0.00579
CZH£+ 0. 00023 0.00073
C,Hg 0. 001 04 0.00116
HZO 0.00120
co 0.00125
CO2 0. 00291
HZCO 0.00323
C3H4 0.00012

C302 0.00473

®Listed are the differences AE = (Energy for MOCETGAQ basis) - (Energy
for standard basis type given in Table ZI) for all molecules except
C,H, and C.,0 where AE = (Energy for short MOCETGAO basis) ~ (Energy for
I%ng MOCET%A% bases given in Table 21).

Experimental geometries given in Reference(40). See Table 41.
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important s-type and two most important p-type MOCETGAO's, there is

very little deterioration in the energies for all molecules except

C2H2 where an additional p-type MOCETGAQ is necessary to achieve equal
accuracy. While the eigenvalues A, give a good indication of the

relative importance of the MOCETGAO's in one symmetry, only representative
molecular recalculations show how many of them will be routinely

required.

It should be noted that none of the MOCETGAO coefficients have small
enough magnitudes to permit elimination of the unimportant primitives as
was possible for the isolated atoms in Chapter |. However, because of
the small size of the primitive bases, such reductions are of little
interest since they would yield very little savings in integral evalua-
tion time. For example, if the two smallest coefficients of each s-
type MOCETGAO in the basis C[4;2], H[2] for C,H), are set equal to zero,
our integrals program shows that the time saved amounts to only 0.4%.

An important question is how the MOCETGAO's of different molecules
are related. First, tests may be performed to see how closely the
MOCETGAO's span the same space. For this purpose, we consider the
transformation matrix D of the full set of MOCETGAO's from molecule M to

molecule N,

Q) (M) 5 (M,N)

? . =Zo, ki (372)
k

or

R VR RO I

I PR (37b)
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it follows from the orthogonality of the MOCETGAO's for each molecule

that

(M,N) _

(M) ~(N)
Dy 2T Ty - (38)

jk

—

The matrices of Equation (38) for each pair of molecules C,H,, CoHe,

¢0,, and HZO are shown in Table 36. The smallness of the s-orbital

elements D(M’N) and D(MfN) for i=1 to 6 and p-orbital elements D(MZN)
5,i 6,i 3,i

and DéM;N) for i=1 to 4 suggest a good degree of transferability between

3

the molecules. This is verified by the energy comparisons of Table 37.
Here the optimal primitive basis of each molecule is used, but with the
coefficients Tjk(l) from other molecules. These results emphasize the
importance of ?q(N)(S) for the energy when the MOCETGAO's coefficients are
transferred between prototypes. Furthermore, the closer the optimal
(aQ,Sl)-values, the better the approximation.

Next, we turn to the selection of MOCETGAO's for (lnaz, lnBR) values
lying anywhere along the search directions of Figure 9. Within each
group of molecules, the hydrocarbons or the oxygen-containing molecules,
graphs of the MOCETGAO coefficients of Table 34 versus lnal are found
to closely approximate straight lines. The situation is displayed in
Figure 10 for the carbon p-type orbitals of the hydrocarbons. Each line
(M)
k

corresponds to Tj with the same (jk) subscripts as indicated. Thus, a

set of linear equations,

M) _ .
Tk = Ak Tna, + By, (39)

may be constructed for the carbon, oxygen, and hydrogen orbitals
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between prototype molecules

Transformation matrices of the WOCITGAO's

Carbon s—-orbital Matrices

0.9906
0.1048
0.0769
-0.0426
0.0053

0.0012

02H6

0.9431
0.0251
0.2869
—0.1660
-0.0000
-0.0126

Q
O

A}

n
v

CLE
276

CoHy

0.9944 -0.0048
~0.0017 0.989%
~0.0081 0D.1248

0.0011 -0.0106

0.0006 -0.0000

C2H2

0.9918 0.1236
-0.1224 0.9415
-0.0349 0.1772

0.0004 0.0011

-0.0039 -0.0009

arbon p-orbital Matrices

CoHy

0.9980 0.0564
~0.0524 0.9908
0.0353 -0.1230
0.00229 -0.0033

CoHy

0.9931 -0.1007
0.1036 0.9935
0.0542 -0.0521
0.0076 —0.0117

0.0510
0.0133
-0.1217
0.9881
~0.0781

-0.0005

0.2092
0.0176
-0.1270
0.9677
0.0118

0.0571

-000286
0.1247
0.5910
0. 0398

-0.0598
0. 0470
0. 9935
0.0843

-0.0020
-0.0007
0.0006
0.0789
0.9955

0.0528

-0.0006
0.0032
0.0113

-0.0584
0.1252

0.9903

-0.0016
-0.0015
-0.0400

0.9992

-0.0037

0.0069
-0.0851
0.9963

-0.0010
-0.00207
-0.0002
-0.0036
-0.0527

0.9986

-0.0021
-0.0011
-0.0009
-0.0043

0.9921

-0.1257
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H50

Oxygen s-orbital

0.9972 0©.029!
-0.0274 0.9991
0.0356 —-0.0289
-0.0591 0.0109
-0.0035 0.0013
-0.0014 0.0010

Oxygen p-

0.9922
0.1183
HZO -0.0397
0.0004

CO,

0.0610
-0. 0144
-0.0614

0. 9955

0.0334

0.0127

orbital

CO,

—-0.1176
0.9929
0.C190

-0.0027

Matrices

~-0.0310
0.0291
0.9971
0.0638
-0.0023
0.0022

Matrices

0.0416
—0.0143
0.9979
-~0. 0476

0.0014
-0. 0009
0.0044
-000344
0.9952
0.0913

0.0013
0.0020
0.0476
0.9989

Hydrogen s-orbital Matrices

0.9951

CZH6 0.0026

C2H2

0.0988
0.9242
0.0414

-0.0414
0.9893

-0.0034 -0.0068 —-0.1400

0.0031
0.0007
0.1401
0.9901

0.0005
-0.0008
-0.0017
-0.0917

0.9957
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Table 37. Comparison of energies for uncontracted basis with energies
for carbon MOCETGAQ bases transferred between molecules

Mgggyggo co® co, CoHg*
cl3 (H,t0);2],0[3;2] -34237
clk(H,c0);52],0(3;2] . 01085 . 00391
Cl4 (H,C0)52 (H,C0)],0[3;2] . 01314 .00527
cl3 (C,H,)52(C,H,)1,00352] .81342 . 12500
cl4 (C,H, )52 (C,H, )], 00352] .01218 . 00831

3listed are the differences AE =
for standard basis type given in Table 21).

(Energy for MOCETGAO basis) - (Energy

The notation C[M(HZCO),Z(H C0)] implies that four s- type and two p-

type MOCETGAO's are transferred from H co

on CO and CO2

CExperimental geometries given in Reference (40).

See Table 41.

and used in calculations
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describing the coefficients as functions of 1na It should be mentioned

%"

that polynomial equations are obtained for each carbon orbital when all

molecules are considered together. However, straight line dependence

between both groups is closely approached if, for each orbital, the inner

and outer shell dependence are extracted from the MOCETGAO's of Table 34

by diagonalizing the matrix of the one-electron operator,

Zz
—-]—-2- —j—
2 Vi § r.. i
J

formed from the MOCETGAO's. As an example, the eigenfunctions and eigen-

values for the carbon s-orbitals in CO, are shown in Table 38. The

2
eigenvalues indicate that there is one orbital representing the inner

shell and three for the outer shell. Unfortunately, if the first three
s-type functions and the first two p-type functions are used, the SCF
energy of CO2 increases by 0.012 Hartree above the energy of the cor-
responding basis size in Table 21. Therefore, a less-accurate transferable
set of three s-type and two p-type MOCETGAO's is obtained from these
functions. Consequently, the MOCETGAO's of Table 34 will be used in the
sequel.

It is expected that the use of Equations (39) during optimizations
along the directions of Figure 9 give maximum flexibility in the MOCETGAQ
basis. At the same time, however, these equations must be programmed
and provision made to allow for changes in the signs of the coefficients.
On the other hand, the results of Tables 36 and 37 imply that fixed
MOCETGAO coefficients will be satisfactory for achieving most of the

variation of lnaz and 1n82. The effectiveness of this latter approach
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Table 38. Eigenvalues and eigenvectors of the one-electron Hamiltonian

matrix in the basis of the carbon MOCETGAQ's of CO2

Carbon s-orbital Eigenvalues and Eigenvectorsa

Eigenvalues -17.965449 -4. 450777 -1.632416 19. 749051
0.018100 -0.686652 -1.645347 -0.353498
0. 098862 -0. 569000 1.139885 0.720348
0. 750302 0.481741 -0.505187 -1.767519
0.439574 0. 184265 -0.231773 0.824561
0. 086864 0.031332 -0. 036107 0. 043685
0.021840 0. 007882 -0. 009844 0.037198
Carbon p-orbital Eigenvalués and Eigenvectorsa’

Eigenvalues -4.161687 -1.788225
0.103629 0.918571
1.052374 -0.309205
0.287079 -0.074187
0. 065408 -0.016670

@contracted (MOCETGAO) basis is C[4;2] of Table 34.

b
Apply equally to (2px), (2py), (2pz)-
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will be tested in the next section.

Procedure of Minimization for Methyl Acetylene
and Carbon Suboxide

The molecules methyl acetylene (C3Hh) and carbon suboxide (C302)

contain C-C and C-0 bonds which are intermediate to the single and

multiple bonds of the prototype molecules CZHZ’ CZHA’ C,H,, and £O

oHe s Thus,

2
the quality of the parameter values of Table 19 and the MOCETGAO's of

Table 34 for use in large molecules is assessed by optimizing the even-

tempered parameters of C H4 and C.0,.

3 372

Optimizations for CBHA

The optimizations of carbon and hydrogen parameters are done in two
stages. First, the effect of replacing the three hydrogens of CZHG by
the group C=C-H (or, equivalently, replacing the single hydrogen atom of
CZH2 by the group H3C-C) is determined by optimizing all parameters of
CBHA at the experimental geometries of C2H2 and C2H6. Second, using the
optimal parameters of the first stage, the equilibrium internuclear
distances and bond angles of C3H4 are predicted. Then, all of the
parameters are reoptimized at this new geometry. A detailed discussion
of geometry optimizations is given in the next section.

The optimal carbon and hydrogen parameter values given in Table 19
for CZHZ and C2H6 are suitable starting values for both stages and are
readily assigned to the hydrogen and outermost carbon atoms. For the
central carbon atom, the assignment is made under the assumption that the

triple bond is more important for the molecular energy than the ''single'
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bond. In this case, the starting values are taken from CZHZ’ instead
of C2H6. The basis set for each atom is then formed from the appropriate
MOCETGAO coefficients of Table 34.

According to the discussion of the previous section, the MOCETGAO
basis C[4;3], H[2] is large enough so that sufficient flexibility is
retained during minimization. Furthermore, it was shown for the proto-
type molecules that, to a good approximation, the coefficients of Table
34 may be kept constant throughout (except for a normalization constant),
providing the 1na2 and lnBZ values don't change substantially from those
of C2H2 and C2H6. Since this analysis was based on comparisons for the
prototype molecules which contain quite different bonding characteristics,
even better approximations are expected for CBHh'

These implications are tested on C3H4 at the experimental geometries
of C?_H2 and C2H6. Optimizations are first carried out for the s-type
orbitals of the central carbon atom since the largest adjustment of
parameters should occur for this atom. The appropriate line of Figure 9
and a second direction at 135° are searched by calculating the energies at
points located at distances of A]nao=0.05 on each side of the optimal
points indicated for C2H2. It is found that one quadratic prediction for
each direction is sufficient to establish convergence. The parameter
values and energies for both predictions are such that [;f -'Ei! < ’5x10—3
and 0 < (Ef - Ei) < 10-4 where E, = ~-115.69300 Hartrees. These results
indicate that the basis size may be reduced to C[33;3], H[2] for all atoms

in the molecule before proceeding further. An additional reduction of the

number of carbon p-type MOCETGAO's is not made since the largest variation
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of even-tempered parameters is expected for ]na] and 1n61. Using this
basis, optimizations for the 2p-orbital of the central carbon atom and
all orbitals of the remaining atoms are carried out in the same way.
Again, all parameters are unchanged from those of C2H2 and C2H6. The
minimum energy is given in Table 21.

We now examine the changes which the parameters undergo when optimiza-
tions are performed at the theoretical equilibrium geometry of C3Hh' The
equilibrium bond lengths and bond angles used are given in Table 41 of
the next section. The previous search directions, initial parameter
values of CZHZ and C2H6’ and criteria are also used here. Calculation
shows that the parameters for all carbon s-orbitals, the acetylene-like
and carbon 2p-orbital, and the acetylene-like hydrogen ls orbital are
constant. However, the 2p-orbital parameters for the ethane-like and
middle carbon atoms do change, corresponding to an energy lowering of
0.0002 Hartree to -115.70035 Hartrees. These adjustments occur entirely
along the initial directions of Figure 9. Convergence along the second
direction is considered sufficient to end the search for each orbital be-
cause of the closeness of the initial and final parameter values. The

final results are given in Table 19 and 21 and plotted in Figure S.

Optimizations for C302

The optimizations of carbon and oxygen parameters for C302 are per-

formed only for the linear geometry D__ where the bond lengths, r(c-C) =

h
.53 and r(C-0) = 1.2R, are taken from Cotton and Wilkinson (45).

Although these distances are too large and differ from experiment (46) by
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ar(c-C) = 0.02R and ar(C-0) = 0.04R, the results obtained for CH, indi-
cate that the two sets of optimal parameters would not be substantiaily
different.

Selections of the starting parameters for C302 may be made on the
basis of the relative electronegativities of the atoms. We assume, then,
that the presence of the oxygen atoms at both ends of the molecule is the
overwhelmingly dominant influence so that the optimal parameters and
MOCETGAQ coefficients of 602 should be used exclusively. Since the
oxygen atom is expected to be especially important for the energy,
optimizations are first carried out in order to determine the importance
of the fourth oxygen s-type MOCETGAO in the basis 0[4;3], C[4;3]. Pro-
ceeding in the same way as for C3Hh’ it is found after one quadratic
prediction for each direction that the parameter values for oxygen and
the molecular energies for both predictions are such that l‘;f - 3i[ <
5 x 1072 and 0 < (E. - E.) < 1074 where E; = -262.76696 Hartrees. The
basis size is now reduced to 0[33;3], C[43;3] and optimizations performed
on the outer carbon atoms. The initial energy is =-262.76681 Hartrees.
By far, the largest variation occurs for the s-orbitals as seen in
Figure 9. For the s-orbitals, three energy calculations in addition to
the initial calculation are required to reach the point at lnao = -2.192
where the energy increases by 0.005 Hartree from the last point to
-262.76772 Hartrees. These points are located at distances of Alnao =
0.05, 0.15, and 0.35 along the line from the initial point. It is now
evident that the CO2 parameters for the s-orbitals are poor starting

values and that those for CZHQ are better. Replacing the carbon
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s-orbital MOCETGAO coefficients for CO2 with those for Cth, the energy
of C302 is calculated to be -262.79264 Hartrees at the point correspond-
ing to C2H4 of Figure 9. An additional seven energy calculations along
this direction and the one at 135° are required to reach the ﬁinimum.

In the case of the p-orbitals, it is seen in Figure 9 that the optimal
parameter values and MOCETGAO coefficients of the outer carbon atoms are
similar to those of COZ’ Turning now to the central carbon atom, the
final parameters shown in Figure 9 indicate that the combined effect of
the C=0 groups on this atom is similar to that of the oxygen atom in COZ'

Completion of the optimizations results in an overall energy lowering

of 0.031 Hartree to the final value -262.79774 Hartrees.

Conclusions concerning the optimizations on C3Hh and C302

The following conclusions may be drawn from the optimizations for
C3Hh and C302. First, most of the energy improvement is achieved by
first searching the lines of Figure 9. This is so even if a poor
selection of initial parameter values is made from the prototype mole-
cules. In fact, the need for a second search direction is substantially
reduced and may be eliminated unless greater accuracy is desired. Second,
the high degree of transferability of prototype optimal parameters indi-
cates that with a careful choice of parameters and MOCETGAO coefficients,
the electronic distribution of a large molecule is sufficiently well
represented so that only very few optimizations are required. Third,
the MOCETGAO coefficients of Table 34 may be used for optimizations of

ap and 32' Moreover, for the same type of atom, two sets of coefficients
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which differ in symmetry (different 2 value) and molecular origin may
be mixed and the corresponding parameters then optimized.

The optimal molecular orbitals for C3Hh and 0302 are given in Tables
39 and 40. The labelling of the MO's and selection of coordinate systems
are the same as described previously, except that here each row of co-
efficients is labelled by the MOCETGAO designations cof Table 34. The

coordinates of the atoms are given in Table 33.
Molecular Equilibrium Geometries

General results

A complete geometry optimization for a molecule containing more than
two atoms requires the variation of all bond lengths and angles so that
the best values corresponding to the correct symmetry point group yield
the lowest energy. However, in view of the existing experimental and
theoretical data for the molecules considered in this paper, no attempt
was made here to alter any of the symmetry point groups except for C302
where some question has remained. A one-dimensional search procedure,
using quadratic predictions, similar to the method used previously was
sufficient for calculations on CHA, COZ’ and CO. For the other molecules,
the geometric parameters were optimized two at a time going through as
many cycles as needed. The choice of these pairs and the sequence in
which they were considered for the various molecules is as follows (AB
denotes the bond length A~B, ABC denotes the angle between the bonds A-B

and B-C, the number indicates the required number of cycles):



Table 33. Optimized MO's for methyl acetylene
gmg mm.d wwg »m;

€ -11.236841 -11.236070 -11.215853 -1.066956
C1 os -0.644031 -0.330836 0.004142 -0.342407

es2 -0.364257 -0.183611 0.009573 0.363717

®s3 -0.000431 -0.001188 -0.001176 -0.003299

Ppx1 0.0 0.0 0.0 0.0

©px2 0.0 0.0 0.0 0.0

®px3 0.0 0.0 0.0 0.0

©py 1 0.0 0.0 0.0 0.0

opy2 0.0 0.0 0.0 0.0

PRy 3 0.0 0.0 0.0 0.0

“¥pz1 0.001580 0.002560 0.005434 0.125219

vpz2 0.000778 -G.001358 0.002509 0.035985

©pz3 =0.000714% -0.001450 -0.000972 -0.005376
C2 vs1 -0.364637 0.712816 -0.086191 -0.386306

¢s2 -0.131515 0.255221 -0.023142 0.395181

©s3 0.000214 0.000304 -0.000359 -0.000232

Ppx1 0.0 0.0 0.0 0.0

Ppx2 0.0 0.0 0.0 0.0

GMuunw 0.0 0.0 0.0 0.0

opy1 0.0 0.0 0.0 0.0

opy2 0.0 0.0 0.0 0.0

opy3 0.0 0.0 0.0 0.0

©pz1 0.011421 0. 000900 0.016686 0.090891

opz2 0.001853 0.000504 0.007231 0.046333

opz3 =-0.002934 0.000273 -0.001362 0.015102
C3 ws1 -0.026522 0.075331 0.801173 -0.289701

os2 -0.018333 0.029813 0.286130 0.300049

¢s3 0.000875 C.000130 0.000213 -0.001360

opx1 0.0 0.0 0.0 0.0

®px2 0.0 0.0 0.0 0.0

Ppx 3 0.0 0.0 0.0 0.0

opy1 0.0 0.0 0.0 0.0

©py2 0.0 0.0 0.0 0.0

©opy3 0.0 0.0 0.0 0.

opz1 0.011294 -0.011374 0.007688 -0.252067

©pz2 0.004372 -0.006645 0.000296 -0.081837

epz3 =-0.001178 0.000057 -0.002535 -0.012804
H1 os1 -0.002385 -0.002391 0.003256 0.145883

os2 -0.000839 0.000029 -0.001779 -0.020560
=21 es1 -0.002385 ~0.002391 0.003256 0.145883

©s2 -0.000839 0.00002¢ -0.001779 -0.020560
H1 os1 -0.002385 -0.002391 0.003256 0.145883

es2 -0.000839 0.000029 -0.001779 -0.020560
H2 os1 -0.009768 0.009993 -0.001793 0.236765

ps2 0.003608 -0.003360 0.002154 -0.064921
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mm:
-0.973700

-0.390343
0.387673
0.005976

cNeoNoNoNeoNe
[
oNeoNoloNoNe)

-0.076281

-0.032695
0.006214
0.132306

-0.139336
0.001041
0.0

[eNeNeoNe]
cNeoleolNo)

0.0
—-0.399464
~0.034652
-0.009100

0.298509
—-0.291663
-0.001917

0.0

oNeoNeoNeNo]
L]
*NoNoNeNol

G.097312
-0.006073
0.018887
0.132913
0.018657
0.132613
0.018657
0.132913
0.018657
—~0.124680
0.001510

mm.d
-0.725296

0.086981

-0.099372
0.002411
o.o

oNeNoNeRe
.
(ol eoRoleNe

0.149370
-0.030150
0.004648
-0.208875
0.200905
0.002561

>

[eNoleoNo ol
.
(el e oo o)

0.0
=0.112227
~0.058142

0.020400

0.221878
-0.231814%

0.000216

0.0

oNeoReNo o
.
OO0 OOo

-0.513749
0.038978
0.009495

-0.105599
0.010214

-0.105599
0.010214

-0.105599
0.010214

-0.395982

-0.047467

Qmj
-0.628701

0.038093
-C. 000350
o.o

0.0

o.o

0.0

0.0

o.o
~0.525448
0.002103
-0.003019
0. 1409156
~C.162151
0.002296
0.0

COO0O00
[}
o000

0.458947
~0.090969
-0.001067
~-0.037068

0.021957

0.002571

0.0

[eReNele
[oleNoNo)

0.0
-0.210377
0.085541
-0.013344
C.150865
0.008636
0.150865
0.008636
0.150865
0.008636
-0.239176
0.013324
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Tabtle 39. (Continued)
1e 2e 3e 4e
£ -0.596474 =0e 596463 -0e392439 -0.392434
C1 os1 0.0 0.0 0.0 0.0
QSZ 0.0 0.0 0.0 0.0
os 3 0.0 0.0 0.0 0.0
®ox1 0.113424 0.581209 0.201236 0.039180
opx2 =-0.001320 -0.007111 0.C28190 0.005472
vpx3 -0.000007 -0.000005 -0. 000910 -0.000173
opy1 0.581297 -0.113360 -0.039253 0.201309
opy?2 -0.007105% 0.001376 —0.005523 0.028234
$py3 =-0.000018 0.000006 0.000161 —0.000918
@pz‘l 0.0 0.0 0.0 0.0
9pz2 0.0 0.0 0.0 0.0
®pz3 0.0 0.0 0.0 0.0
C2 9s1 0.0 0.0 0.0 0.0
s 2 Q.0 0.0 0.0 0.0
0s3 0.0 0.0 0.0 0.0
©px1 0.034050 0.174502 ~0.572020 ~-0.111597
Ppx2 -0.004665 =~0.023847 ~0.028547 -0.005654
®px3 -0.000045 —0.000226 0.002051 0.000379
Ppy1 0.174467 -0.034024 0.111537 -0.572013
opy2 -0.023821 0.004662 0.005532 -0.028551
epy3 =0.000214 0.000049 -0.000437 0.002055
vpz1 0.0 0.0 0.0 0.0
Ppz2 0.0 0.0 0.0 0.0
®pz3 0.0 0.0 0.0 0.0
C3®s1 0.0 0.0 0.0 0.0
®s2 0.0 0.0 0.0 0.0
0s3 0.0 0.0 0.0 0.0
©0px1 0.020073 0.103322 -0.585725 -0.113951
Ppx2 -0.000197 -0.001131 -0.012513 -0.002332
Ppx3 0. 000202 0.001004 0.001514 0.000309
opy1 0.103363 -0.020148 0.114137 ~-0.585747
®py2 -0.001115 0.000215 0.002534 -0.012577
Ppy2 0.000992 -0.000219 - Q0. 000057 0.001470
CDpZ‘l 0.0 0.0 0.0 0.0
¢pz2 0.0 0.0 0.0 0.0
®pz3 0.0 0.0 0.0 0.0
H1os1 0.076041 0.390524 0.191237 0.037375
®s?2 0.003300 0.016643 -0.007306 ~-0.001430
H1os1 0.300089 -0.261208 -0.127886 0.146871
vs2 0.012817 -0.011135 0.004884 -0.005593
Hl1oes1 -0.376130 -0.129316 -0.063351 -0.184246
©s2 -0.016117 -0.005508 0.002422 0.007023
H1os1 0.0 0.0 0.0 0.0
®s2 0.0 0.0 0.0 0.0
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Table 40.

0 oet
vs2
Ps 2
opx1
©px2
opx3
®py1
®py2
oDy 3
opzl
©pz2
©DZ3

0 os1
Ps2
ws3
Ppx]
®px2
©ox3
ooy 1
opy2
®Dy 3
©pzZi
©pz2
opz3

-0.304914
0.559041
0.000246

¢ o

COO0OQOO0
¢ o o o
[eNoNeoNeNoNa]

-0.002468

-0.001266
0.002102
0.304914

=0.559041

-0.000246
0.0

[eNeoNeNoNeo!
OO0 O

L)
-
-
*
L J

-0.002468
-0.001266
0.002102

(cont.)

-0.304895
0.559066
0.000220

[eNeNoNoNoNe)
e o & o
0O00O0O00

-0.002355
-0.001 145
0.002110
-0.304895
0.559066
0.000220

[eNeNoNoNoNeo]
¢ o
loNejoRoNoNe]

0.002355
0.001145
-0.002110

20
u
(cont.)

-0.001252
=0.00099¢6
0.000183

-0.003163

-0.000476
0.000423
0.001252
0.000996

-0.000183
0.0

[eNeNoNoNe
[oReReNoNo)

-0.003163

-0.000476
0.000423

20
g
(cont.)

0.0014556
0.001248

-0.000305
0.0

[cRoNoNo N
[eNoNoNeNo)

0.003428
0.001210
—0.000222
0.001456
0.001248

-0.000305
0.0

[eNeoN oo el
[eNoNoRolNo]

-0.003428
-0.001210
0.000222
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3cg

(cont.)

0.000598
C.000747
-0.000207

00245
0.000109
0.000124
0.000598
0.000747

~-0.000207

N0245
-C.000109
-C.000124

pEvNoRe N oo N o]
)
QOOOO OO

30

u
(cont.)

-0.414011

-0.254372

-0.003301
0.0

OO0O0COo
[ocNeoNoNoNe

-0.081627
0.068819
-0.001187
0.414011

0.254372
0.003301

OO0 OO0
® o s o
[eNeoNoNoNoNe)

-0.081627
0.068819
-0.001187

%
g

(cont.)

—0.419003

—0.259992

-0.002249
0.0

QOO0
e
[oNeNoNeNe]

-0.C87470

0.062940
-0.002127
-0.419003
~0.259992

—=0.002249

0.0

[eNoNoYolNe)
QOO0 O

0.087470
~0.062940
0.002127

509
(cont.)

-0.102876
-0.066524
-0.001265

0.0

0.0

0.0

0.0

0.0

0.0

0.031158

0.016055
-~0.001179
-0.102875
-0.066524
-0.001265

0.0

OO0 O
OO0 O

0.0
-0.031158

-0.016055
0.001179

[eNeoNoNeNe)
[oNeNoNoNe

Lo
u

(cont.)

-C. 140537
~-0.093054
—-0.000822
0.0
0.088078
0.01409¢
~0.000501
C. 140537

0.093054
0.000822

QOO0 oo
e o
QOO0 OO

0.088078
0.014094
-0.000501




Table 40. (Continued)
6c 5¢ Im 17
o] u ux uy
3 ~0.737549 -0.727560 -0.660346 -0.660346
C1 ws1 —0.239638 0.0 0.0 0.0
©0s2 0.442818 0.0 0.0 0.0
©s3 —0.046289 0.0 0.0 0.0
ws4 -0.001685 0.0 0.0 0.0
opx1 0.0 0.0 0.234545 0.0
Ppx2 0.0 0.0 0.010670 0.0
vpx3 0.0 0.0 0.000933 0.0
®pyl 0.0 0.0 0.0 0.234545
®py2 0.0 0.0 0.0 0.010670
Py 0.0 0.0 0.0 0.000933
vpzl 0.0 -0.271525 0.0 0.0.
©pz2 0.0 -0.103054 0.0 0.0
©pz2 0.0 ~0.000846 0.0 0.0
C2 ®os1 0.140572 G.105270 0.0 0.0
ps2 -0.129500 -0.112835 0.0 0.0
®s2 =0.002494 0.001863 0.0 0.0
©s4 -0.001410 -0.000310 0.0 0.0
®px1 0.0 0.0 0.334032 0.0
wox2 0.0 0.0 0.053597 0.0
PoX3 0.0 0.0 0.000073 0.0
opyl 0.0 0.0 0.0 0.334032
opy2 0.0 0.0 0.0 0.053597
vyl 0.0 0.0 0.0 0.000073
vzl 0.106767 C.161262 0.0 0.0
®pz2 —0.176818 -0.185637 0.0 0.0
©pz3 -0.001035 -0.002214 0.0 0.0
C2os1 0.140572 -0.105270 0.0 0.0
©vs2 -0.129500 0.112835 0.0 0.0
©s) -0.002494 -0.001863 0.0 0.0
€4 -0.001410 0.000310 0.0 0.0
®oxl 0.0 0.0 0.334032 0.0
©3x2 0.0 0.0 0.053597 0.0
Ppx 0.0 0.0 0.0000773 0.0
©opyl 0.0 0.0 0.0 0.334032
©2y2 0.0 0.0 0.0 0.053597
vpyl 0.0 0.0 0.0 0.000073
©pzl -0.106767 0.161262 0.0 0.0
®pz2 C.176818 -0.185637 0.0 0.0
®pz3 0.001035 -0.002214 0.0 0.0
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CoHy: (cc,CH); 2 cycles

C,H, and CoHg:  (CC,CH); (CH,HCH); 2 cycles

HZO: (OH,HOH) ; 3 cycles

H,CO: (co,CH), (CH,HCH); 2 cycles

H3CC'C“H': (ccr,crer), (ccr,CH), (c'c'',c''H');

2 cycles for (CC', C'C") only

occ'co: (cc', CO) at angles of 0CC' = 180° and
CC'C = 180°; 2 cycles _
(cc', co) at angles of 0CC' = 180° and

CC'C = 150° and 170°.

For the two-dimensional searches, the following method was employed.
First, six energies were calculated at six points arranged as shown in
Figure 11. These energy values are sufficient to determine a quadratic

function, given by the Lagrange interpolation formula (47),

2 1
[ (fg*+fg ) - F

f(xo + ph, Yo + gk) = q 0,1 0,-1

0,0]

]
7 G0 fog,0 ~ fool valz (fy ;- fy y)]

relg (f o= fy ol +ma (foo*f 1 - Flo~ foi) * oo

+0 (hd) (40)

where 0(h3) is the error as a function of h3. Second, the minimum was
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predicted by setting the derivatives of Equation (40) equal to zero.
Numerical testing on some of the smaller molecules revealed that h and k
as well as the distance between the evenly-spaced points in the one-
dimensional searches should be assigned maximum values of 0.01% or 1.5°
in order that 0(h3) be negligible.

The general spatial contraction of the atomic orbitals around the
nuclei in the molecules as shown in Figure 9 suggest that the electronic
charge is attenuated in the bond regions so that theoretical band lengths
will underestimate experiment. This assumption was verified by testing
on some of the small molecules. Thus, in all succeeding bond-length
optimizations, the experimental bond lengths were assigned to the point
(x0+?1,yo + k) of Figure 11 rather than (xo, yo) so that improved pre-
dictions could be made. On the other hand, the initial pairs of param-
eters involving bond lengths and bond angles were assigned to (xo, yo)
since no definite trend could be found for the angles. In the second
cycle, as many of the previously computed energies as possible were used
with the predicted minimum of the first cycle assigned to (xo, yo). Often,
five new energies had to be calculated. With the exception of HZO’ only
two cycles were needed for each pair. Even then, the second predicted

point was found to differ from the first only by amounts < 0.005 R or 0.5°.

The corresponding energy gain was < IO-A Hartree. In the case of C3Hh’
recycling through all pairs was found to be unnecessary because the C-C
bonds didn't change in the second cycle. Additional testing in most
molecules showed that the accuracies of the bond lengths and bond angles

are < 0.00] R and < 1°, respectively.
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(xo,yo+k)? (x +.h,yo + k)

(x5 -h,y,) (xo+h,yo)
- . d '
(xo,yo)
® (xo,yo-k)

Figure 11. Arrangement of six points for molecular geometry
optimizations
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The optimal bond lengths and angles are given in Table 41, and the
corresponding energy lowerings are given in Table 42. It is seen that
quantitative agreement with experiment is quite good for all molecules
except H20. The largest errors are 0.031 R for the ethane-like C-H bond
in C3H4 and 8.2° in H,0. it is interesting to note that the addition of
a single, optimized p-orbital to hydrogen in HZO improves the H-0-H angle
by only 2°. The addition of d-type Gaussian polarization functions to
oxygen in H20 should improve the angle even more. The accuracies of
these bond lengths and angles of Table 41 are comparable to those fcund

by Newton et al. (48) and Hehre et al. (49).

The geometry Si C302

The structure of carbon suboxide has been previously investigated by
a variety of experimental and theoretical techniques. While infrared
and Raman spectrum studies (50,51) have given strong evidence in favor of
a linear structure, the possibility of a nonlinear conformation could not
be entirely eliminated. An ab initio calculation was made by Sabin and
Kim (44), who varied the C-C-C angle from 180° to 170°, while keeping the
€-C-0 angle at 180°. Their results are indicated by a triangle (A) in
Figure 12 and predict the linear configuration as the most stable. Very
recently, Weimann and Christoffersen (52) have made another ab initio
calculation involving drastic simplifications and constraints. They
varied the C-C-C angle from 180° to 90° and the C-C-0 angle from 180° to
172° and found that a zig-zag structure with a C-C-C angle of 125° and a
C-C-0 angle of 176° to be the most stable. Under the constrained C-C-0

angle of 180°, they obtained a minimum at the C-C-C angle of 125°.
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Table 41. Comparison of theoretical and experimental geometries

Bond Lengths and Bond Anqlesa

Moleculel” © F(c-C) r(c-0) r(c-H) r(0-H) B (HCH) & (HOH)
CH,, (T ) 0. 003
hid 1.085
C.H, (D L) 0.013 0. 021
22 ”h) 1.203 1.061
C.H, (D 0.010 0. 002 -0.3
2742k 1.330 1.076 115.6
C.H, (D, ) 0.010 0.028 1.25
2673 1.53k 1.093 109. 75
Hy CCCH(Cy ) 0. 004 0.031 1.1
- v g 1.459 1.105 108.7
H3cggﬁjc3v) 0.014 0.017
1.206 1. 056
H.0(C, ) 0. 020 -8.20
27 0.957 10L. 52
co(c_,) 0. 021
b 1.128
co,. (D ) 0.011
2 eh | 1.160
€0, (D 0.026 0. 005
32 =h 1.28 1.16
H.CO(C... ) -0.005  0.030 2.0
27 2y 1.203  1.101 116.5

a

Each entry contains the difference Ar = r(experiment) - r (theoretical)
or poe = g(experimental) - O(theoretical) in the first row and the
experimental value of Reference (40) in the second row.

b . . . . .
Symmetry point group is given in parentheses. Each point group was
maintained during the optimizations.

“Contracted (MOCETGAO) basis C[332],0{322],H[2] is used for all molecules
except (30, where C[43;2],0[3;2] is needed.

“Each entry pertains to the bonds connrecting the underlined atoms.
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Table 42. Energy lowerings corresponding to theoretical equilibrium
geometries of Table 41

Molecule® AEb
CHy, 0. 00051
CoH, 0.00122
C2H4 0.00074
C2H6 0.00109
H20 0.00259
co 0.00115
CO2 0. 00005
HZCO 0.00151
C3Hh 0. 00261
C302 0.00217

®Contracted (MOCETGAO) basis cl352],0[3;2),H[2] is used for all molecules
except C3 2 where C[4;2),0[3;2] is used.

bEnergy lowering AE = (Energy for MOCETGAO basis obtained from Table 35
at experimental geometries) - (Energy for MOCETGAO basis at theoretical
equilibrium geometry).



169

0.024 T i T T l )
0.022r

0.020

I

Q.0I18

0016+ AE AT
Req (C-0)= 1254 A

0014+ Req (C-0)= 1.155R

0.0l12F \'\

0.0i0r

AE (HARTREE)

0008 -

0.006 -

AE AT
Req (C-C)=12654
Req (C-0)=11554

0004 -

0.002

'
' ———
— - ~ —

» "— ~

Q000 =< —
° ! ~
]
! ~

—0.002%- e e
180 |70 I60 180 40 130 120

8(C-C-C)
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These results are indicated by the dashed curve in Figure 12. In view
of these inconsistencies, it was considered of interest to investigate
the molecular energy of C302 as a function of all the geometrical
parameters by the present approach, using the MOCETGAO bases C[4;2],

0 [3;2] constructed from Tables 19 and 34.

The solid curve in Figure 12 gives our results as a function of the
C-C-C angle with the C-C and C-0 bond lengths fixed at the equiliﬁrium
values for the C-C-C angle of 180° and with the C-C-0 angle constrained
at 180°. For the fixed C-C-C angle of 170°, the C-C-0 angle was changed
to 175° to yield a zig-zag structure, which further increased the energy
to the value indicated by a square (O ) in Figure 12. For the C-C-C
angles of 170° and 150° and C-C-0 angle of 180°, the two bond lengths were
reoptimized, yielding the energies indicated by circles in Figure 12.

The bond lengths were found to be unchanged at 170°, whereas at 150°, the
C-0 and C-C lengths were found to be 1.15 R and 1.26 ﬂ, respectively. In
the context of an ab initio calculation with the reliability of the one
performed here, the substantial energy increase for decreasing C-C-C
angle seems to us to be conclusive evidence for a linear conformation.

The orbital energies for linear C302 are given in Table 43. The
accuracy of the present calculation is illustrated by using Koopmans'
theorem (54) to compare the theoretical and experimental first ionization
potentials. The experimental value is 10.60 eV (4k), whereas from Table
43 the orbital energy for 2wu is 10.88 eV. In addition, the orbital
energies of Table 43 and those over the range of angles are plotted in

Figures 13 and 14. The atomic and overlap populations are given in
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Table 43. Orbital energies for C302 at theoretical equilibrium geometrya

Orbital Symmetry .Orbital Energy
]cu -20.625100
log -20.625093
zdu -11.429803
Zgg -11.429394

-11.246111
309
3o -~ 1.525928
u
ucg - 1.522778
~ 1.1222
509 35
hgu -~ 0.955428
6cg - C. 741335
5cu - 0.735470
lnu - 0.679373
]ﬂg - 0.64L0035
27 - 0.399820

Scontracted (MOCETGAO) basis set is cli4;2],0[3;2].
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Table 44. These results may fit in with an explanation given by Smith
and Leroi (53), pertaining to the relative ease of bending at the central
carbon. According to this explanation, the relatively low vibrational
frequency of 63 cm_] Is due to the presence of the 2wu orbital which,
during bending, maintains a sufficiently high charge density on the
central carbon atom in spite of the presence of a lwg orbital of lower
energy. The energy of Zwu remains nearly constant because of the low
atomic population on the twg carbon atoms which are neighbors to the

center of bending.

Reaction Energies
The accuracy with which reaction energies AE are computed, using
approximate Hartree-Foch wavefunctions (HF app.) and energies, is

determined by the magnitudes of the second and third terms in

AE (experiment) = AE(HF app.) + A[E(HF exact) - E(HF app.)]
(41)

+ AE (correlation) + A[E(translation) + E(vibration) + E(rotation)].

The second term approaches zero as the Gaussian basis set approaches
completeness, and it will be small if a judicious choice of basis set is
made. The correlation correction, AE (correlation), will be present no
matter what the size of the basis set. However, its value is often small
or even negligibie for a variety of reactlons of chemical interest

where the number of paired electrons is conserved between reactants and
products. In order to ascertain the magnitudes of these errors, investiga-

tions have been carried out by Snyder and Basch (55), Hehre et al. (42,49),



Table k. Mulliken population analysis for C3023’b

c-c-C Gross Atomic Net Atomic Overlap

Angle C] C2 0 C] c2 0 C]-C2 CZ-O

Core Shells

180 2.0092 1.9963 1.9990 1.9981 1.9872 1.9953 0.0109 0.0073

170 2.0091 1.9964 1.9990 1.9981 1.9874 1.9953 0.0108 0.0073

150 2.0089 1.9965 1.9991 1.9982 1.9877 1.9953 0.0105 0.0073

130 2.0087 1.9966 1.9991 1.9984 1.9879 1.9953 0.0102 0.0074
Valence Shells

180 L.9372 3.5594 5.9720 L.1286 2.1727 5.1762 0.9977 1.7817

170 Lk.9329 3.5614 5.9721 L,1197 2.1756 5.1778 1. 0007 1.7773

150 4.8838 3.5857 5.9723 L, 0506 2.2005 5.1846 1.0172  1.7613

130 L. 7813 3.6370 5.9724 3.9327 2.2526 5.1930 1.0310 1. 7460

aCarbon atoms in c302 are numbered as 0 =C, = C, =C

b

The 0-C-C angle is fixed

at 180°.

SL1
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and Hariharan and Pople (33), using a variety of Gaussian bases of
different sizes and optimal character. |In Reference (21), accurate
dissociation energies for the trialkali Tons were obtained, using even-
tempered Gaussian basis sets of modest size.

The study of heats of reaction is now extended to include the
standard and MOCETGAO bases of Tables 19 and 34. For these bases, the
total energies of Table 21 are used to compute the reaction energies
given in Table 45. Also listed in Table 45 are theoretical reaction
energies obtained by other authors, and the corrected experimental heats
of reaction at 0°K corresponding to stationary nuclei. Since both AE
(translation) and AE (rotation) vanish, these corrections are obtained
by subtracting AE (vibration) = A[ %-h v, ] from AE (experiment) where
the summation is made over the normal v;brational modes of each molecule
involved in the reaction.

The reactions of Table 45 are divided into two groups--(1) hydrogena-
tion reactions and (2) those reactions for which the deficiencies of the
basis for both reactants and products are such that the second and third
terms of Equation (41) are smaller than for group 1. A comparison of
the heats for the various MOCETGAO bases shows that little deterioration
results in choosing the smallest basis. For the reactions involving only
hydrocarbon and hydrogen molecules, the reaction energies are seen to
approximate experiment as well as those for the comparison bases in
column two. Poorer energies are obtained for reactions involving oxygen-
containihg molecules, especially for group 1.

An explanation for this deterioration may be as follows. The more



Table 45. Comparison of reaction energies (kcal/mole) at 0°K

Standard-type and MOCETGAQ bases Comparigon b
Reaction cl6;4],1[4] c[3:3],H[2] cl3:2],0[3;2]H(2] bases Exptl.

Group 1 Reactions (Hydrogenation)

Hy+CyHe~2CH), | -23.4 -2k, =24, 1 -19.0 -22.9 -24.9 =-18.1
2H2+c2Hu-QCHu ~64.2 -64.3 -64.6 -92.5 =-65.4 =66.5 =57.2
3Hy+CyHy—2CH), -116.6 -116.6 -120.2 -157.5 -118.0 -120.9 =105.4
l&H2+C3H,+—'3CHl+ -131.4 -131.4 -135.0 -105.9 =~132.8 ~-116.3
Hy+CoHy=Cy Hy, -52.4 -52.3 -55.5 -64.9 -52.5 -54.5 -L48.2
Hy+CyH, ~CoH ~-40.8 -40.3 =40.5 -73.4  -42,6 =41.6 =39.1
2Hy+H, CO-CH +H, 0 -69. 1 -70.3 -64.2  -63.5 ~70.2 -57.3
3H,+CO-CHy + H,0 -100.7 -100.6 -81.5 =63.9
4H2+002~CH4+2H20 -104.5 -104.7 -75.9 =-74.8 =-91.3 =56.7

3First and second columns obtained from Hehre et al. (42) and energies of Table 21 corresponding
to the bases of footnotes ¢ and d of that table. Third column obtained from results published by
Snyder and Basch (55), using a basis with 10 s-primitives and 5 p-primitives of the type
€(10;10,10;5),0(10;10,10;5),H(4) contracted to C[4,4;2],0(4,4;2],H(2].

Corrected experimental values obtained from the extensive tabulations of both references in foot~
note a. Zero point vibrational corrections were obtained from Reference (L2).

LLL



Table 45. (Continued)

Standard-type and MOCETGAO bases

Comparigon

Reaction cl6s 4], RILT c3;37,Hl2] c[3;2],0[3;2],Hl2] Bases Exptl.”
Group 2 Reactions

2CH, +C -2 CoHg -17.3 -16.2 -16.3 “5h.b =19.7  -16.7  -21.0
20H, +C, Hy=CoHtC, Hy -29.0 ~28.2 ~31.4 45.9  -29.7 -29.5  -30.1
CHy G Mo CoH, 8.6 9.3 9.3 7.8 8.0 7.2
CHy +C0,-2H, CO 33.6 35.8 52.5 52.2  49.0  57.9
20H, #H, CO-CoHgHAC, HtH, 0 =13.5 ~13.8 1.1 =7.9 -12.0  -10.6
2CH, +CO-C, H+H, CO -8.2 6.2 13.5 1.5
2CHy +C0,C, HeHH, 0+CO 19.7 20. 1 15.1 25.3

8L1L
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nearly alike are the discrepancies in the basis sets for reactants and
products, the greater will be the cancellation of errors in the molecular
energies. This is the case for reactions involving only the hydrocarbon
molecules as is seen for both groups in Table 45. Additional evidence

for the bases themselves is ascertained from Figure 9. On the other hand,
the discrepancies of the basis sets may not be similar in the hydrocarbons
and oxygen-containing molecules. As a result, less cancellation is ex-
pected in reactions involving these molecules. The results of Table 45
and Figure 9 suggest that the major part of the error may be in the

inner shells of carbon and oxygen. The bases used for comparison in Table
45 all contain fixed atomic orbital representations of inner shells where-
as the outer shells are allowed to scale. The corresponding reaction
energies are generally superior. However, it is seen in Figure 9 that
optimization of the inner shell even-tempered parameters leads to carbon
values for CO and CO2 which are quite different from those of the hydro-

carbons and leads to oxygen values for H,0 different from those of CO

2
and C0,. Therefore, it may be that sufficient flexibility should be
maintained in the valence orbitals, but the inner shells should be such

that a nearly constant error is introduced. This problem will be taken

up in future work with the even-tempered basis.
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APPENDIX: DESCRIPTION OF METHODS AND COMPUTER PROGRAMS
USED IN THE MOLECULAR OPTIMIZATIONS

The exponent optimizations discussed previously were carried out
with a set of computer programs consisting of a minimization package and
an SCF molecular program which are linked together to form a fully
automated system. The SCF mo]eculaf program is a highly modified version
of the one described in Reference (56). This reference may be consulted
for the essential features of the program. The following discussion
gives the structure of the minimization package and the methods employed

in each of the subprograms.

Subroutine EXPOPT

This routine oversees the entire minimization package. It is called
by the SCF molecular program. Information pertinent to the progress of
the minimization is stored on peripheral devices after each function
evaluation. A restart option is included so that information from a
previous run may be retrieved and used to restart the minimization at the
exact point where the program ended. Loss of information is thus
minimized. Subprograms in which the molecular integrals and SCF calcu-

lations are performed are called here.

Subroutine PARTNB
This routine is second in command to EXPOPT and is called by EXPOPT.
It contains the Partan scheme, calls MINOL (see below), decides in

conjunction with DECRMT when to decrement the criteria, and calls DECRMT.
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Thus, the routine controls minimization on a ''global' scale.

The method of Partan consists of cycles, each of which contains
parallel (p) and acceleration (a) search directions in the order p; >
a; - p; > a; where the p; search direction of the ith cycle is parallel

to the first acceleration search direction a;-] of the (i-1)th cycle,
and p; is parallel to a;-]. The direction of a% is determined from the
minima along the directions a;_] and p;. The direction a; is similarly
obtained from a;-] and p:. The initial search direction is arbitrary,
but should be chosen as skillfully as possible as emphasized in Chapter
it1. If in doubt, it may be chosen at 45° to the coordinate axes or
chosen as one of the coordinate directions. The second direction may be
chosen perpendicular to the initial direction. Denoting the first and
second directions by p} and a}, respectively, each cycle spells 'papa."
Decrementation of the intial function and parameter criteria,
TPML | and the stepsize STEP to their Tinal values FSTPMN,
PSTPMN, and STEPMN is important for the following reascns. First, the
total number of function evaluations is reduced if, initially, the
criteria and stepsize are set quite loose and tightened at some appropriate
point in the procedure. Second, at the beginning of minimization the
number of directions chosen is more important than a detailed investiga-
tion along each direction for reaching the neighborhood of the minimuﬁ.
In the vicinity of the minimum, a detailed search becomes important so
that the criteria must be stricter.

The amount by which a criterion and stepsize is tightened depends

on the distance from the minimum and the nature of the surface (e.g.
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degree of flatness, etc.). As a result, decrementaticn must proceed in
stages. The greater the distance from the minimum, the smaller must be
the decrementing factor for each stage. The values of the function,
parameter, and stepsize decrementation factors, DF, DP, and DS, are to
be chosen such that FSTPMN, PSTPMN, and STEPMN are reached in an integral
number of steps.

The following decrementation scheme has been found to work satis-
factorily for various surfaces. The decision whether or not to decrement
is made in PARTNB whereas actual decrementation is carried out in DECRMT.
The followirg condition must be met befcre entering DECRMT. The input
and output functicns and points for MINMOL must satisfy linput - output]| <

FSTPML and PSTPML for two successive directions. In the event that either

FSTPML or PSTPML is satisfied, but not both, DECRMT is not entered.
Instead, the criterion that is not satisfied is loosened to assume the
average value of the differences between input and output function values

or points of MINOL for the two directions under consideration, i.e.,
1+ 5. .
7 [lnput] - output][ + llnput2 - outputzl 1.

This requirement eliminates the likelihood of increasing the number of
function evaluations due to premature decrementation of one of the
criteria. Thus, the criteria can change during the course of the minimiza-
tion so that they become more suited to the nature of the surface by
approaching commensurability. The stepsize is decremented when the above

conditions are satisfied for the criteria.
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It frequently happens that PSTPML is satisfied for pairs of directions
far in advance of FSTPML. This situation arises because the parameter
values obey a linear relationship whereas the function values undergo
more drastic, nonlinear changes. As a consequence, the function criterion
may be loosened so much that it will be satisfied too soon, resulting in
decrementation and an increased number of function evaluations. This
circumstance is remedied by introducing an additional criterion PDECR as
input which specifies how close the initial and final function values
must be along a particular direction before decrementation.

An extremely loose vaiue of PSTPHML will also lead to the situation
discussed in the previous paragraph. A loose value of PSTPML could also
cause MINOL to end without finding a new minimum. As a consequence,
Partan might not yield a new direction which could result in again
searching a previous line. In order to eliminate this possibility,

PARTNB forces MINOL to find a new minimum. |[f, after five quadratic
predictions no new point is found, PARTNB avoids researching the direction
by choosing a direction which bisects the quadrant currently being in-
vestigated unless Partan can choose a new direction.

In spite of the adjustments discussed previously, decrementation for
both criteria may not proceed simultaneously or at all. It is possible
that only one criterion may require decrementation. In this case, FSTPMN
or PSTPMN must be already satisfied in both directions.

The minimization ends when FSTPMN and PSTPMN are simu)taneously

satisfied for two successive directions.
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Subroutine MINOL
This routine finds the function minimum along a direction chosen
in PARTNB. It proceeds by quadratic prediction and accelerated stepping.
MINOL returns to PARTNB with its best point and function value when either
a parameters criterion or a function criterion has been satisfied.
Quadratic fitting requires three function values (F],FZ,F3) and their

associated points along the search direction

S; = (xni - xno)/un (i =1,2,3 ) (42)

where X is the nth component of the ith vector in the parameter space
of the function, and u is the nth component of the unit vector giving
the search direction. Si is always measured from the origin of the
search direction. The minimum of the quadratic is determined from the
equation

(s3 - s%) Fy o+ (s% - B Py (sh - sh) F

s, = 23 . (43)
2[(52-53) Fl + (53-51)F2 + (51'52)F3]

Concavity or convexity of the surface is obtained from the second

derivative

! (44)

322 _ -2 [(52-53)F] + (S3-S])F2+(S]-SZ)F3]
357 ¢

(52-53)(53-51)(51-52)

Accelerated stepping is used to bracket the minimum along the
direction in as few function evaluations as possible. This permits full

utilization of the benefits of quadratic fitting by rapidly forcing the
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search into the immediate vicinity of the minimum. Since acceleration

is combined with quadratic-fitting to guarantee a downhill search, the
point at the minimum of the quadratic, Equation (43), is used to deter-
mine the acceleration step. The comparison of this point with additional
points is demonstrated in the flow diagram (left-hand side) of Figure 15.
Succeeding function evaluations are made at the indicated points, de-
pending on which of the inequalities are satisfied. It can be seen that
the flatter the surface, the larger the stepsize chosen. Accelerated
stepping ends when the first bracketinyg function is determined, i.e. when
F3 > F,. In case Equation (44) is negative, (Sh < Sz), the new point
S3l= S3 + 5 (S3 - Sz) is chosen. This acceleration has been found to
permit rapid exit from the region of cohvexity.

After the first bracketing is achieved, the routine continues with
bracketing situations un%il one of the criteria is satisfied as shown on
the right-hand side of the fiow diagram. Each time, the function is
computed at Sh and the best three of the four points are kept.

Provision is made to eliminate the first bracketing function value
if it is much larger than the other values and will likely continue
forcing the quadratic prediction substantially away from the minimum.

This function value must satisfy

_ 13
Fy = F, < FBIGF (F, - F,), FBIGF = 10 (45)

if it is to be retained.
If Equation (45) is not satisfied, the smallest three of the four

function values, which are not necessarily bracketing, are retained for
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In the diagram, x1<x2<x3 and fi>f2'

ST=Distance between second and third points, lxz-x3[.
PC=Parameter criterion; FC=Function criterion.
Find minimum of quadratic at point Xy,
Bracket?
No ‘\\\iiijf////' Yes llL
e |
m'n‘xi—xhl Yes
X3=x3+5 (ST) L < PC,
i=1,2,3
No
W
N,
F4=F(xh) Return
x3=x3+(ST) \IL :r/
f.-f
max[ ! 41 Yes
< FC,
_ i=1,2,3
x3—x3+2(ST) -
sign(xh-xz)\ <0
+
4<x3+IO(ST) x3=x, -
x3=x3+10(ST) | <0
X=Xy ’f‘lf’;z X1 =%y ’;'f"h
1272 f3=f& x]=x2 f]= 41 I1X,=X%
—s f =F(X ) ST=(X3"X2) | 274 372
373 f.=f Jf 5f £ =f f.=f
1 7222 °3 274
1

Figure 15. Partial flow diagram for MINOL
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the remalning quadratic fittings. In case a poor quadratic prediction
is obtained after elimination of F(big) and S(big) so that Sy > s(big)

a return to bracketing is made by setting

53new - S3O]d + FCTR [SB(big) - SZOId]’ FCTR = IE'OI’ -BE (l§6)

new If bracketing is impossible, MINOL returns the

and calculating F3
best values found.

In case of convexity, Sh is chosen as

S, = S(4) = NFAIL * DXN * [S(3) - S(1)] + S(MIN) (47)

where NFAIL 1Is the number of consecutive times the surface has appeared
convex and DXN is the direction away and downhill from the best point
found so far, S(MIN). The maximum value NFAIL assumes before MINOL returns
with the best values is five.

Both the parameter and function criteria need not be satisfied in
MINOL. Since use of the function criterion requires additional function
evaluations, the parameter criterion PMNL is always checked preferentially.

The parameter and function criteria are given as follows:

mintlsi - S,*l] < PMNL, i =1,2,3,
(48)
max[|F, - Fy|] < FSTPML, T =1,2,3.

However, both the parameter and function criteria need not be satisfied
In MINOL. Since use of the function criterion requires additional

function evaluations, the parameter criterion PMNL is always checked
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preferentially. The sufficiency of one or the other is possible because
quadratic fitting guarantees closeness for both. Thus, convergence in
the Cauchy sense occurs which means that if S], Sz, S3 and 54 are getting
close together in value, then they must be getting close (converging)
to something.

Theoretically, the parameter criterion (PMNL) in MINOL should be
equal to PSTPML in PARTNB. However, due to the importance placed on
PMNL in MINOL, it is best to make it smaller than PSTPML, but never
smaller than PSTPMN. The following relation has been found to be

satisfactory for a variety of surfaces,
PMNL = PSTPML/10 . (49)

The function criterion is equal to that in PARTNB.

The choice of stepsize (STEP) is also important, but somewhat
arbitrary. A compromise must be achieved between calculating three
function values which provide too much detail about the surface or too
little at the start of MINOL. From the previous discussion it is evident
that stepsize will determine the rate of accelerated stepping.

Both PMNL and STEP are decremented in DECRMT as Partan progresses.
However, PMNL never becomes smaller than PSTPMN.

Note: this version of MINOL may be used in conjunction with a many-
parameter minimization program. In addition, it may be entered with two

or three points according to the value of NPNTS (see above).
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Subroutine DECRMT
Decrementation of the criteria and stepsize is carried out in this
routine. Refer to PARTNB for details concerning the method of decremen-

tation.
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